您现在的位置是: 首页 > 教育资讯 教育资讯

物理滑轮难吗-物理高考滑轮

tamoadmin 2024-09-25 人已围观

简介1.高中物理必修一所涉及到的题型2.高考物理真题:平衡状态下的受力分析3.高中物理,如何判断A对B的摩擦力方向与B对A的摩擦力方向,摩擦力方向与运动方向有什么关系,4.听说高考要考物理,但我物理不好怎么办?高中物理必修一所涉及到的题型一.描述运动的基本概念1.参考系⑴定义:在描述一个物体的运动时,选来作为标准的假定不动的物体,叫做参考系。⑵对同一运动,取不同的参考系,观察的结果可能不同。⑶运动学中

1.高中物理必修一所涉及到的题型

2.高考物理真题:平衡状态下的受力分析

3.高中物理,如何判断A对B的摩擦力方向与B对A的摩擦力方向,摩擦力方向与运动方向有什么关系,

4.听说高考要考物理,但我物理不好怎么办?

高中物理必修一所涉及到的题型

物理滑轮难吗-物理高考滑轮

一.描述运动的基本概念

1.参考系

⑴定义:在描述一个物体的运动时,选来作为标准的假定不动的物体,叫做参考系。

⑵对同一运动,取不同的参考系,观察的结果可能不同。

⑶运动学中的同一公式中涉及的各物理量应以同一参考系为标准,如果没有特别指明,都是取地面为参考系。

2.质点

⑴定义:质点是指有质量而不考虑大小和形状的物体。

⑵质点是物理学中一个理想化模型,能否将物体看作质点,取决于所研究的具体问题,而不是取决于这一物体的大小、形状及质量,只有当所研究物体的大小和形状对所研究的问题没有影响或影响很小,可以将其形状和大小忽略时,才能将物体看作质点。

⑴物体可视为质点的主要三种情形:

①物体只作平动时;

②物体的位移远远大于物体本身的尺度时;

③只研究物体的平动,而不考虑其转动效果时。

3.时间与时刻

⑴时刻:指某一瞬时,在时间轴上表示为某一点。

⑵时间:指两个时刻之间的间隔,在时间轴上表示为两点间线段的长度。

⑶时刻与物体运动过程中的某一位置相对应,时间与物体运动过程中的位移(或路程)相对应。

4.位移和路程

⑴位移:表示物体位置的变化,是一个矢量,物体的位移是指从初位置到末位置的有向线段,其大小就是此线段的长度,方向从初位置指向末位置。

⑵路程:路程等于运动轨迹的长度,是一个标量。

5.速度、平均速度、瞬时速度

⑴速度:是表示质点运动快慢的物理量,在匀速直线运动中它等于位移与发生这段位移所用时间的比值,速度是矢量,它的方向就是物体运动的方向。

⑵平均速度:物体所发生的位移跟发生这一位移所用时间的比值叫这段时间内的平均速度,即,平均速度是矢量,其方向就是相应位移的方向。

⑶瞬时速度:运动物体经过某一时刻(或某一位置)的速度,其方向就是物体经过某有一位置时的运动方向。

6.加速度

⑴加速度是描述物体速度变化快慢的的物理量,是一个矢量,方向与速度变化的方向相同。

⑵做匀速直线运动的物体,速度的变化量与发生这一变化所需时间的比值叫加速度,即

⑶对加速度的理解要点:

①注意速度和加速度两个概念的区别,速度是描述物体运动快慢和方向的物理量,是位移和时间的比值,加速度是描述物体速度变化快慢和方向的物理量,是速度变化和时间的比值,速度和加速度都是矢量,速度的方向就是物体运动的方向,而加速度的方向不是速度的方向,而是速度变化的方向,所以加速度方向和速度方向没有必然的联系。

②加速度的定义式不是加速度的决定式,在该式中加速度并不是速度变化量和时间t决定,不能由此得出a与成正比、与时间t成反比的结论,加速度的决定式,即物体的加速度由合外力和物体的质量决定,加速度跟合外力成正比,跟质量成反比,加速度的方向与合外力的方向相同。

③物体做加速直线运动还是做减速直线运动,判断的依据是加速度的方向和速度方向是相同还是相反,只要加速度方向跟速度方向相同,物体的速度一定增大,只要加速度方向跟速度方向相反,物体的速度一定减小。

二.运动图象

s—t图象与v—t图象的比较

图A-2-6-1和下表是形状一样的图线在s—t图象与v—t图象中的比较.

s—t图

v—t图

①表示物体匀速直线运动(斜率表示速度v)

①表示物体匀加速直线运动(斜率表示加速度a)

②表示物体静止

②表示物体做匀速直线运动

③表示物体向反方向做匀速直线运动;初位移为s0

③表示物体做匀减速直线运动;初速度为v0

④t1时间内物体位移s1

④t1时刻物体速度v1(图中阴影部分面积表示质点在0~t1时间内的位移)

三.匀速直线运动

1.定义:物体在一条直线上运动,如果在相等的时间里位移相等,这种运动就叫做匀速直线运动,定义中的“相等时间”应理解为所要求达到的精度范围内的任意的相等时间。

2.规律:匀速直线运动中,物体的位移与时间成正比。

3.公式:⑴s=vt ⑵t=s/v ⑶v=s/t

◎命题趋势◎

高考对本单元知识点的考查表现在对一些物理量的理解判断能力,如质点、位移、路程、速度、平均速度、瞬时速度等,其直接考查的几率不大,多数情况是与动力学或其他知识综合在一起考查。

匀变速直线运动的基本规律及推论:

基本规律:⑴Vt=V0+at,

⑵s=V0t+at2/2

推论:⑴Vt-2VO2=2as

(Vt/2表示时间t的中间时刻的瞬时速度)

⑶任意两个连续相等的时间间隔(T)内,位移之差是一恒量.即:sⅡ-sⅠ=sⅢ-sⅡ=……=sN-sN-1=△s=aT2.

说明:

⑴公式涉及五个物理量V0,Vt,s,a,t每一个公式各缺一个物理量,在解题中,题目不要求和不涉及哪个物理量,就选用缺这个物理量的公式,这样可少走弯路,找到最优解法.

⑵公式均是矢量表达式,对匀变速直线运动来讲,通常取初速度方向为正方向,其他矢量取正或负数代入公式运算.

2.初速度为零的匀加速直线运动的特点: (设T为等分时间间隔):

⑴1T末、2T末、3T末……瞬时速度的比为

v1:v2:v3:……vn=1:2:3:……:n

⑵1T内、2T内、3T内……位移的比为

s1:s2:s3:……:sn=12:22:32:……:n2

⑶第一个T内、第二个T内、第三个T内……位移的比为

s1:sⅡ:sⅢ?……:sN=1:3:5:……:(2n-1)

⑷从静止开始通过连续相等的位移所用时间的比

t1:t2:t3:……:tn=

一、自由落体运动

1.自由落体运动的概念

物体只在重力作用下从静止开始下落的运动,叫做自由落体运动.

2.自由落体运动的特点

⑴v0=0;

⑵a=g=9.8m/s2;

⑶方向竖直向下

3.自由落体运动的规律

Vt=gt

h=gt2/2

v2t=2gh

4.必须是从静止开始算起的自由下落过程才是自由落体运动,从中间取的一段运动过程不是自由落体运动.

二、竖直上抛运动

1.竖直上抛运动的概念

物体以初速v0竖直上抛后,只在重力作用下而做的运动,叫做竖直上抛运动(匀变速运动规律对它都适用).

2.竖直上抛运动的规律

取向上的方向为正方向,有

vt=v0-gt

h=v0t-gt2/2

v2t-v20=2gh

3.几个特征量

⑴上升的最大高度h=v20/2g.

⑵上升到最大高度处所需时间t上和从最高点处落回原抛出点所需时间t下相等.

即t上=t下=v0/g.

4.竖直上抛运动的两种研究方法

⑴分段法:上升阶段是匀减速直线运动,下落阶段是自由落体运动.下落过程是上升过程的逆过程.

⑵整体法:从全程来看,加速度方向始终与初速度v0的方向相反,所以可把竖直上抛运动看成是一个匀变速直线运动,应用公式时,要特别注意v,h等矢量的正负号.一般选取向上为正方向,v0总是正值,上升过程中v为正值,下降过程中v为负值,物体在抛出点以下时h为负值.

1.练习使用打点计时器

⑴实验原理:打点计时器是一种使用低压交流电源的计时仪器,其工作电压为4~6伏,当电源为50Hz交流电时,它每隔0.02秒打一次点.当物体拖着纸带运动时,打点计时器便在纸带上打出一系列点,这些点记录了运动物体的位移和发生相应位移所用的时间,据此可定量研究物体的运动.

⑵注意事项

①要先接通电源,后让纸带运动,并且每打完一条纸带,应及时切断电源.

②拉动纸带时要平直,不要与限位孔摩擦.

③不必把打的第一个点作为计量起点.

④测各段长度时,不要用短尺分段测量.

2.测定匀变速直线运动的加速度

⑴实验原理

①利用纸带判断物体作匀变速运动的方法:如图A-2-10-1所示,0、l、2……为时间间隔相等的各计数点,s1、s2、s3.……为相邻两个计数点间的距离,若△s=s2-sl=s3-s2……=常数,即连续相等时间内的位移差为恒量,则说明与纸带相连的物体做匀变速运动.

②利用纸带求运动物体加速度的方法:

a.用“逐差法”求加速度:

根据s4-s1=s5-s2=s6-s3=3aT2(T为相邻两计数点间的时间间隔)得:a1=(s4-s1)/3T2,a2=(s5-s2)/3T2,a3=(s6-s3)/3T2,

再求出a1、a2、a3的平均值,即为物体的加速度.

b.用v-t图象求加速度:

先根据vn=(sn+sn+1)/2T,求出打第n点时纸带的瞬时速度,然后作出v-t图象.图线的斜率即为物体运动的加速度.

⑵实验器材:打点计时器、纸带、复写纸片、低压交流电源、小车、细绳、一端附有滑轮的长木板、刻度尺、钩码、导线.

⑶实验中应特别注意:

①开始应把小车停靠在打点计时器处,再让小车运动,以使纸带上多打些点.

②要先接通电源,再放开小车.

③要选择比较理想的纸带进行分析,舍掉开头较密集的点.

④测量各记数点间的距离时不要分段测量.

高考物理真题:平衡状态下的受力分析

16.如图,一小球放置在木板与竖直墙面之间。设墙面对球的压力大小为 ,球对木板的压力大小为 。以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置。不计摩擦,在此过程中

A. 始终减小, 始终增大

B. 始终减小, 始终减小

C. 先增大后减小, 始终减小

D. 先增大后减小, 先减小后增大

14.质量为 的物体用轻绳 悬挂于天花板上。用水平向左的力 缓慢拉动绳的中点 ,如图所示。用 表示绳 段拉力的大小,在 点向左移动的过程中

A. 逐渐变大, 逐渐变大 B. 逐渐变大, 逐渐变小

C. 逐渐变小, 逐渐变大 D. 逐渐变小, 逐渐变小

5.如图,一不可伸长的光滑轻绳,其左端固定于 点,右端跨过位于 点的固定光滑轴悬挂一质量为 的物体; 段水平,长度为 ; 绳上套一可沿绳滑动的轻环。现在轻环上悬挂一钩码,平衡后,物体上升 ,则钩码的质量为

4.如图,墙上有两个钉子 和 ,它们的连线与水平方向的夹角为 ,两者的高度差为 。一条不可伸长的轻质细绳一端固定于 点,另一端跨过光滑钉子 悬挂一质量为 的重物。在绳上距 端 的 点有一固定绳圈。若绳圈上悬挂质量为 的钩码,平衡后绳的 段正好水平,则重物和钩码的质量比 为

17.如图,两个轻环 和 套在位于竖直面内的一段固定圆弧上; 一细线穿过两轻环,其两端各系一质量为 的小球。在 和 之间的细线上悬挂一小物块。平衡时, 、 间的距离恰好等于圆弧的半径。不计所有摩擦。小物块的质量为

16.如图所示的水平面上,橡皮绳一端固定,另一端连接两根弹簧,连接点 在 、 ,和 三力作用下保持静止。下列判断正确的是

1.如图所示,石拱桥的正中央有一质量为 的对称楔形石块,侧面与竖直方向的夹角为 ,重力加速度为 。若接触面间的摩擦力忽略不计,则石块侧面所受弹力的大小为

16.如图所示,两根等长的轻绳将日光灯悬挂在天花板上,两绳与竖直方向的夹角都为45°,日光灯保持水平,所受重力

为 G,左右两绳的拉力大小分别为

和 和

和 和

6.已知两个共点力的合力为 ,分力 的方向与合力 的方向成 角,分力 的大小为 。则

(A) 的大小是唯一的 (B) 的方向是唯一的

(C) 有两个可能的方向 (D) 可取任意方向

14.如图所示,与水平面夹角为 的固定斜面上有一质量 的物体。细绳的一端与物体相连,另一端经摩擦不计的定滑轮与固定的弹簧秤相连。物体静止在斜面上,弹簧秤的示数为 。关于物体受力的判断(取 ),下列说法正确的是

A. 斜面对物体的摩擦力大小为零

B.斜面对物体的摩擦力大小为 ,方向沿斜面向上

C.斜面对物体的支持力大小为 ,方向竖直向上

D.斜面对物体的支持力大小为 ,方向垂直斜面向上

17.如图所示,两相同轻质硬杆 、 O02可绕其两端垂直纸面的水平轴 、 、 。 转动,在 点悬挂一重物 ,将两相同木块 紧压在竖直挡板上,此时整个系统保持静止。 表示木块与挡板间摩擦力的大小, 表示木块与挡板间正压力的大小。若挡板间的距离稍许增大后,系统仍静止且 、 始终等高,则

变小 不变 变小 变大

5.如图所示,一夹子夹住木块,在力 作用下向上提升。夹子和木块的质量分别为 、 ,夹子与木块两侧间的最大静摩擦力均为 。若木块不滑动,力 的最大值是

19.如图,一光滑的轻滑轮用细绳 悬挂于 点;另一细绳跨过滑轮,其一端悬挂物块 ,另一端系一位于水平粗糙桌面上的物块 。外力 向右上方拉 ,整个系统处于静止状态。若 方向不变,大小在一定范围内变化,物块 仍始终保持静止,则

A.绳 的张力也在一定范围内变化

B.物块 所受到的支持力也在一定范围内变化

C.连接 和 的绳的张力也在一定范围内变化

D.物块 与桌面间的摩擦力也在一定范围内变化

21.如图,柔软轻绳 的一端 固定,其中间某点 拴一重物,用手拉住绳的另一端 。初始时, 竖直且 被拉直, 与 之间的夹角为 。现将重物向右上方缓慢拉起,并保持夹角 不变。在 由竖直被拉到水平的过程中

A. 上的张力逐渐增大 B. 上的张力先增大后减小

C. 上的张力逐渐增大 D. 上的张力先增大后减小

7.明朝谢肇淘的《五杂组》中记载∶“明姑苏虎丘寺塔倾侧,议欲正之,非万缗不可。一游僧见之曰∶无烦也,我能正之。” 游僧每天将木楔从塔身倾斜一侧的砖缝间敲进去,经月余扶正了塔身。假设所用的木楔为等腰三角形,木楔的顶角为 ,现在木楔背上加一力 ,方向如图所示,木楔两侧产生推力 ,则

A.若 一定, 大时 大 B.若 一定, 小时 大

C.若 一定, 大时 大 D.若 一定, 小时 大

16.用卡车运输质量为 的匀质圆筒状工件,为使工件保持固定,将其置于两光滑斜面之间,如图所`示。两斜面Ⅰ、Ⅱ固定在车上,倾角分别为 和 。重力加速度为 。当卡车沿平直公路匀速行驶时. 圆筒对斜面Ⅰ、Ⅱ压力的大小分别为 、 ,则

高中物理,如何判断A对B的摩擦力方向与B对A的摩擦力方向,摩擦力方向与运动方向有什么关系,

首先要明确每种说法中的研究对象;然后看相互接触的两物体之间有无相对运动或相对运动趋势。

A对B的摩擦力,指的是物体B受到的摩擦力,受力物体是B,研究对象是B。B所受的摩擦力总是阻碍B的滑动或滑动趋势的。

例如:B在A表面上向左滑动时,B受到的摩擦力方向就向右;B在A表面上随着A一起由静止开始向左运动时,B相对于A没有向右打滑,说明B受到的静摩擦力阻碍它向右打滑,B受到的摩擦力方向向左。

B对A的摩擦力,指的是A受到的摩擦力。前面的回答中,AB互换即可。

听说高考要考物理,但我物理不好怎么办?

高中物理解题方法指导

物理题解常用的两种方法:

分析法的特点是从待求量出发,追寻待求量公式中每一个量的表达式,(当然结合题目所给的已知量追寻),直至求出未知量。这样一种思维方式“目标明确”,是一种很好的方

法应当熟练掌握。

综合法,就是“集零为整”的思维方法,它是将各个局部(简单的部分)的关系明确以后,将各局部综合在一起,以得整体的解决。

综合法的特点是从已知量入手,将各已知量联系到的量(据题目所给条件寻找)综合在一起。

实际上“分析法”和“综合法”是密不可分的,分析的目的是综合,综合应以分析为基础,二者相辅相成。

正确解答物理题应遵循一定的步骤

第一步:看懂题。所谓看懂题是指该题中所叙述的现象是否明白?不可能都不明白,不懂之处是哪?哪个关键之处不懂?这就要集中思考“难点”,注意挖掘“隐含条件。”要养成这样一个习惯:不懂题,就不要动手解题。

若习题涉及的现象复杂,对象很多,须用的规律较多,关系复杂且隐蔽,这时就应当将习题“化整为零”,将习题化成几个过程,就每一过程进行分析。

第二步:在看懂题的基础上,就每一过程写出该过程应遵循的规律,而后对各个过程组成的方程组求解。

第三步:对习题的答案进行讨论.讨论不仅可以检验答案是否合理,还能使读者获得进一步的认识,扩大知识面。

一、静力学问题解题的思路和方法

1.确定研究对象:并将“对象”隔离出来-。必要时应转换研究对象。这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。

2.分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。以受力图表示。

3.根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。

4.对于平衡问题,应用平衡条件∑F=0,∑M=0,列方程求解,而后讨论。

5.对于平衡态变化时,各力变化问题,可采用解析法或图解法进行研究。

静力学习题可以分为三类:

① 力的合成和分解规律的运用。

② 共点力的平衡及变化。

③ 固定转动轴的物体平衡及变化。

认识物体的平衡及平衡条件

对于质点而言,若该质点在力的作用下保持静止或匀速直线运动,即加速度 为零,则称为平衡,欲使质点平衡须有∑F=0。若将各力正交分解则有:∑FX=0,∑FY=0 。

对于刚体而言,平衡意味着,没有平动加速度即 =0,也没有转动加速度即 =0(静止或匀逮转动),此时应有:∑F=0,∑M=0。

这里应该指出的是物体在三个力(非平行力)作用下平衡时,据∑F=0可以引伸得出以下结论:

① 三个力必共点。

② 这三个力矢量组成封闭三角形。

③ 任何两个力的合力必定与第三个力等值反向。

对物体受力的分析及步骤

(一)、受力分析要点:

1、明确研究对象

2、分析物体或结点受力的个数和方向,如果是连结体或重叠体,则用“隔离法”

3、作图时力较大的力线亦相应长些

4、每个力标出相应的符号(有力必有名),用英文字母表示

5、物体或结点:

6、用正交分解法解题列动力学方程

①受力平衡时

②受力不平衡时

7、一些物体的受力特征:

8、同一绳放在光滑滑轮或光滑挂钩上,两侧绳子受力大小相等,当三段以上绳子在交点打结时,各段绳受力大小一般不相等。

(二)、受力分析步骤:

1、判断物体的个数并作图:①重力;②接触力(弹力和摩擦力);③场力(电场力、磁场力)

2、判断力的方向:

①根据力的性质和产生的原因去判;

②根据物体的运动状态去判;

a由牛顿第三定律去判;

b由牛顿第二定律去判(有加速度的方向物体必受力)。

二、运动学解题的基本方法、步骤

运动学的基本概念(位移、速度、加速度等)和基本规律是我们解题的依据,是我们认识问题、分析问题、寻求解题途径的武器。只有深刻理解概念、规律才能灵活地求解各种问题,但解题又是深刻理解概念、规律的必需环节。

根据运动学的基本概念、规律可知求解运动学问题的基本方法、步骤为

(1)审题。弄清题意,画草图,明确已知量,未知量,待求量。

(2)明确研究对象。选择参考系、坐标系。

(3)分析有关的时间、位移、初末速度,加速度等。

(4)应用运动规律、几何关系等建立解题方程。

(5)解方程。

三、动力学解题的基本方法

我们用动力学的基本概念和基本规律分析求解动力学习题.由于动力学规律较复杂,我们根据不同的动力学规律把习题分类求解。

1、应用牛顿定律求解的问题,

这种问题有两种基本类型:(1)已知物体受力求物体运动情况,(2)已知物体运动情况求物体受力.这两种基本问题的综合题很多。

从研究对象看,有单个物体也有多个物体。

(1)解题基本方法

根据牛顿定律 解答习题的基本方法是

① 根据题意选定研究对象,确定m。

② 分析物体受力情况,画受力图,确定 。

③ 分析物体运动情况,确定a 。

④ 根据牛顿定律、力的概念、规律、运动学公式等建立解题方程。

⑤ 解方程。

⑥ 验算,讨论。

以上①、②、③是解题的基础,它们常常是相互联系的,不能截然分开。

应用动能定理求解的问题

动能定理公式为 ,根据动能定理可求功、力、位移、动能、速度大小、质量等。

应用动能定理解题的基本方法是 ?

① 选定研究的物体和物体的一段位移以明确m、s。

② 分析物体受力,结合位移以明确 。

③ 分析物体初末速度大小以明确初末动能。

然后是根据动能定理等列方程,解方程,验算讨论。

(例题)如图4—5所示,木板质量 ,长3米。物体质量 。物体与木板间摩擦系数 ,木板与水平地面间摩擦系数 ,开始时,物体在

木板右端,都处于静止状态。现用 牛的水平恒力拉木板,物体将在木板上滑动,问经过2秒后(1)力F作功多少?(2)物体动能多大?( 米/秒2)

应用动量定理求解的问题

从动量定理 知,这定理能求冲量、力、时间、动量、速度、质量等。

动量定理解题的基本方法是

① 选定研究的物体和一段过程以明确m、t。

② 分析物体受力以明确冲量。

⑧ 分析物体初、末速度以明确初、末动量。

然后是根据动量定理等建立方程,解方程,验算讨论。

例题8 质量为10千克的重锤从3.2米高处自由下落打击工件,重锤打击工件后跳起0.2米,打击时间为0.01秒。求重锤对工件的平均打击力。

应用机械能守恒定律求解的问题

机械能守恒定律公式是 知,可以用来求动能、速度大小、质量、势能、高度,位移等。

应用机械能守恒定律的基本方法是

① 选定研究的系统和一段位移。

② 分析系统所受外力、内力及它们作功的情况以判定系统机械能是否守恒。

③ 分析系统中物体初末态位置、速度大小以确定初末态的机械。

然后根据机械能守恒定律等列方程,解方程,验算讨论。

四、电场解题的基本方法

本章的主要问题是电场性质的描述和电场对电荷的作用,解题时必须搞清描述电场性质的几个物理量和研究电场的各个规律。

1、如何分析电场中的场强、电势、电场力和电势能

(1)先分析所研究的电场是由那些场电荷形成的电场。

(2)搞清电场中各物理量的符号的含义。

(3)正确运用叠加原理(是矢量和还是标量和)。

下面简述各量符号的含义:

①电量的正负只表示电性的不同,而不表示电量的大小。

②电场强度和电场力是矢量,应用库仑定律和场强公式时,不要代入电量的符号,通过运算求出大小,方向应另行判定。(在空间各点场强和电场力的方向不能简单用‘+’、‘-’来表示。)

③电势和电势能都是标量,正负表示大小.用 进行计算时,可以把它们的符号代入,如U为正,q为负,则 也为负.如U1>U2>0,q为负,则 。

④ 电场力做功的正负与电荷电势能的增减相对应,WAB为正(即电场力做正功)时,电荷的电势能减小, ;WAB为负时,电荷的电势能增加 。所以,应用 时可以代人各量的符号,来判定电场力做功的正负。当然也可以用 求功的大小,再由电场力与运动方向来判定功的正负。但前者可直接求比较简便。

2、如何分析电场中电荷的平衡和运动

电荷在电场中的平衡与运动是综合电场;川力学的有关知识习?能解决的综合性问题,对加深有关概念、规律的理解,提高分析,综合问题的能力有很大的作用。这类问题的分析方法与力学的分析方法相同,解题步骤如下:

(1)确定研究对象(某个带电体)。

(2)分析带电体所受的外力。

(3)根据题意分析物理过程,应注意讨论各种情况,分析题中的隐含条件,这是解题的关键。

(4)根据物理过程,已知和所求的物理量,选择恰当的力学规律求解。

(5)对所得结果进行讨论。

例题4 如图7—3所示,如果 (氚核)和 (氦核)垂直电场强度方向进入同—偏转电场,求在下述情况时,它们的横向位移大小的比。(1)以相同的初速度进入,(2)以相同的初动能进入; (3)以相同的初动量进入; (4)先经过同一加速电场以后再进入。

分析和解 带电粒子在电场中所受电场力远远大于所受的重力,所以重力可以忽略。带电粒子在偏转电场受到电场力的作用,做类似于平抛的运动,在原速度方向作匀速运动,在横向作初速为零的匀加速运动。利用牛顿第二定律和匀加速运动公式可得

(1)以相同的初速度v0进入电场, 因E、l、v0都相同,所以

(2)以相同的初动能Ek0进入电场,因为E、l、mv2都相同,所以

(3)以相同的初动量p0进入电场,因为E、l、mv0都相同,由

(4)先经过同一加速电场加速后进入电场,在加速电场加速后,粒子的动能

(U1为加速电压)

因E、l、U1是相同的,y的大小与粒子质量、电量无关,所以:

注意 在求横向位移y的比值时,应先求出y的表达式,由题设条件,找出y与粒子的质量m、电量q的比例关系,再列出比式求解,这是求比值的一般方法。

3、如何分析有关平行板电容器的问题

在分析这类问题时应当注意

(1)平行板电容器在直流电路中是断路,它两板间的电压与它相并联的用电器(或支路)的电压相同。

(2)如将电容器与电源相接、开关闭合时,改变两板距离或两板正对面积时,两板电正不变,极板的带电量发生变化。如开关断开后,再改变两极距离或两板正对面积时,两极带电量不变,电压将相应改变。

(3)平行板电容器内是匀强电场,可由 求两板间的电场强度,从而进—步讨论,两极板问电荷的叫平衡和运。

4、利用电力线和等势面的特性分析场强和电势

电力线和等势面可以形象的描述场强和电势。电荷周围所画的电力线数正比于电荷所带电量。电力线的疏密,方向表示电场强度的大小和方向,顺电力线电势降低,等势面垂直电力线等……可以帮助我们去分析场强和电势

例题 有一球形不带电的空腔导体,将一个负电荷—Q放入空腔中,如图所示。问:

(1)由于静电感应,空腔导体内、外壁各带什么电?空腔内、导体内、导体外的电场强度,电势的大小有何特点,电场强度的方向如何?

(2)如将空腔导体内壁接地;空腔导体内外壁各带什么电?空腔内、导体内、导体外的场强,电势有何变比?

(3)去掉接地线,再将场电荷-Q拿走远离空腔导体后,空腔导体内、外壁各带什么电?空腔内、导体内、导体外部的场强、电势又有什么变化?

分析和解 本题利用电力线进行分析比较清楚

(1)把负电荷放人空腔中,负电荷周围将产生电场,(画出电力线其方向是指向负电荷)自由电子由低电势到高电势(电子逆电力线运动)发生静电感应,使导体内壁带有电量为Q的正电荷,导体外壁带有电量为Q的负电荷,如图7所示。空腔导体里外电力线数一样多(因电力线数正比于电量)空胶外电力线指向金属导体(电力线止于负电荷)。越靠近空腔导体场强越大。导体中无电力线小,电场强度为零,空腔内越靠近负电荷Q电力线越密,电场强度也越大。顺电力线电势降低,如规定无穷远电势为零,越靠近空腔导体电势越低,导体内部电势相等,空腔内越靠近负电荷Q电势越低。各处的电势均小于零。

(2)如把空腔导体内壁接地,电子由低电势到高电势,导体上的自由电子将通过接地线进入大地,静电平衡后导体内壁仍带正电,导体外壁不带电。由于电力线数正比于场电荷,场电荷-Q未变所以空腔内的电力线分布未变,空腔内的电场强度也不变。导体内部场强仍为零。由于导体外壁不带电,导体外部无电力线,导体外部场强也变为零。(要使导体外部空间不受空腔内场电荷的影响,必须把空腔导体接地。)

在静电平衡后,导体与地电势相等都等于零,导体内部空腔中电势仍为负,越靠近场电荷电势越低,各处电势都比 导体按地以前高。

(3)如去掉接地线,再把场电荷拿走远离空腔导体时,由于静电感应,导体外表面自由电子向内表面运动.到静电平衡时,导体内表面不带电,外表面带正电,带电量为Q。

这时导体内部和空腔内无电力线,场强都变为零,导体外表面场强垂直导体表面指向导体外,离导体越远,电力线越疏,场强越小。顺电力线电势减小,无穷远电势为零,越靠近导体电势越高。导体上和空腔内电势相等,各点电势均大于零。

当导体接地时,导体外表面不带电,也可用电力线进行分析。如果外表面带负电,就有电力线由无穷远指向导体,导体的电势将小于零,与导体电势为零相矛盾。如果导体外表面最后带正电,则有电力线由导体外表面指向无穷远,则导体电势将大于零,也与地等电势相矛盾.所以,本题中将导体接地时,导体外表面不再带电。

3、利用等效和类比的方法进行分析

当我们研究某一新问题时,如果它和某一学过的问题类似,就可以利用等效和类比的方法进行分析。

例题 摆球的质量为m,带电量为Q,用摆长为Z的悬线悬挂在场强为E的水平匀强电场中。求:(1)它在微小摆动时的周期;(2)将悬线偏离竖直位置多大角度时,小球由静止释放,摆到悬线为竖直位置时速度刚好是零。

五、电路解题的基本方法

1、解题的基本方法、步骤

本章的主要问题是研究电路中通以稳恒电流时,各电学量的计算,分析稳恒电流的题目,步骤如下:

(1)确定所研究的电路。

(2)将不规范的串并联电路改画为规范的串并联电路。

(使所画电路的串、并联关系清晰)。对应题中每一问可分别画出简单电路图,代替原题中较为复杂的电路图。

(3)在所画图中标出已知量和待求量,以利分析。

(4)应注意当某一电阻改变时,各部分电流、电压、功率都要改变。可以认为电源电动势和内电阻及其它定值电阻的数值不变。必要时先求出 、r和定随电阻的大小。

(5)根据欧姆定律,串、并联特性和电功率公式列方程求解。

(6)学会用等效电路,会用数学方法讨论物理量的极值。

2、将不规范的串并联电路加以规范

搞清电路的结构是解这类题的基础,具体办法是:

(1)确定等势点,标出相应的符号。因导线的电阻和理想安培计的电阻都不计,可以认为导线和安培计联接的两点是等势点。

(2)先画电阻最少的支路,再画次少的支路……从电路的一端画到另一端。

3、含有电容器的电路解题方法

在直流电路中,电容器相当电阻为无穷大的电路元件,对电路是断路。解题步骤如下:(1)先将含电容器的支路去掉(包括与它串在同一支路上的电阻),计算各部分的电流、电压值。

(2)电容器两极扳的电压,等于它所在支路两端点的电压。

(3)通过电容器的电压和电容可求出电容器充电电量。

(4)通过电容器的电压和平行板间距离可求出两扳间电场强度,再分析电场中带电粒子的运动。

4、如何联接最省电

用电器正常工作应满足它要求的额定电压和额定电流,要使额外的损失尽可能少,当电源电压大于或等于两个(或两个以上)用电器额定电压之和时,可以将这两个用电器串联,并给额定电流小的用电器加分流电阻,如电源电压大于用电器额定电压之和时,应串联分压电阻。

例 三盏灯,L1为“110V 100W”,L2为“110V 50W”,L3为“110V 40W”电源电压为220V,要求:①三盏灯可以单独工作;②三盏灯同时工作时额外损耗的功率最小,应怎样联接?画出电路图,求出额外损耗功率。

5、在电路计算中应注意的几个问题

(1)在电路计算中,可以认为电源的电动势、内电阻和各定值电阻的阻值不变,而各部分的电流、电压、功率(或各种电表的示数)将随外电阻的改变而收变。所以,在电路计算中,如未给出电源的电动势和内电阻时,往往要先将其求出再求变化后的电流、电压、功率。

(2)应搞清电路中各种电表是不是理想表。作为理想安培计,可以认为它的电阻是零,作为理想伏特计,可以认为它的电阻是无穷大。也就是说,将理想安培计、伏特汁接入电路,将不影响电路的电流和电压。可以把安培计当成导线、伏特计去掉后进行电路计算。但作为真实表,它们都具有电阻,它们既显示出电路的电流和电压,也显示它自身的电流值或电压值。如真实安培计是个小电阻,真实伏特计是一个大电阻,将它们接入电路将影响电路的电流和电压值。所以,解题时应搞清电路中电表是不是当作理想表。

二、解题的基本方法

1、磁场、磁场力方向的判定

(1)电流磁场方向的判定——正确应用安培定则

对于直线电流、环形电流和通电螺线管周围空间的磁场分布,要能熟练地用磁力线正确表示,以图示方法画出磁力线的分布情况——包括正确的方向和大致的疏密程度,还要能根据解题的需要选择不同的图示(如立体图、纵剖面图或横断面图等)。其中,关于磁场方向走向的判定,要能根据电流方向正确掌握安培定则的两种用法,即:

① 对于直线电流,用右手握住导线(电流),让伸直的大拇指所指方向跟电流方向一致,则弯曲的四指所指方向即为磁力线环绕电流的方向。

② 对于环形电流和通电螺线管,应让右手弯曲的四指所指方向跟电流方向一致,则伸直的大拇指所指方向即为环形电流中心轴线上磁力线方向,或通电螺线管内部磁力线方向(亦即大拇指指向通电螺线管滋力线出发端——北极)。

③ 对于通电螺线管,其内部的磁场方向从N极指向S极;而内部的磁场方向从S极指向N极。从而形成闭合的曲线。

(2)安培力、洛仑兹力方向的判定——正确应用左手定则

① 运用左手定则判定安培力的方向,要依据磁场B的方向和电流I的方向.只要B与IL的方向不平行,则必有安培力存在,且与B、IL所决定的平面垂直。对于B与IL不垂直的一般情况来说,则需先将B矢量分解为两个分量:一个是垂直于IL的 ,另一个是平行于IL的 ,如图9—2所示,再依据 的方向和电流I的方向判定安培力的方向。

在磁场与通电导线方向夹角给定的前提下,如果在安培力F磁场B和通电导线IL中任意两个量的方向确定,就能依据左手定则判断第三个量的方向。

② 运用左手定则判定洛仑兹力的方向,同样要依据磁场B的方向和由于带电粒子运动形成的电流方向(带正电粒子运动形成的电流,方向与其速度v方向一致,带负电粒子运动形成的电流,方向与其速度v方向相反)。只要B与v的方向不平行,则必有洛仑兹力存在,且与B、v所决定的平面垂直。对于B与v不垂直的一般情况来说,则仍需先将B矢量分解为两个分量:一个是垂直于v的 ,另一个是平行于v的 ,如图9-3①所示,(或将u矢量分解为两个分量:一个是垂直于B的 ,另一个是平行于B的 ,如图9—3②所示。)再依据 的方向和v的方向(或B的方向和 的方向)正确判定洛仑兹力的方向。

在磁场B与已知电性粒子的运动速度v的方向夹角给定的前提下,如果在洛仑兹力f、磁场B和粒子运动速度中任意两个量的方向确定,也就能依据左手定则判断第三个量的方向。

2、磁场力大小的计算及其作用效果

(1)关于安培力大小的计算式 ,其中 为B与IL的方向夹角(见图9—2),由式可知,由于角 取值不同,安培力值将随之而变,其中 取 、 值时F为零, 取 时F值最大 。本式的适用条件,一般地说应为一般通电直导线IL处于匀强磁场B中,但也有例外,譬如在非匀强磁场中只要通电直导线段IL所在位置沿导线的各点B矢最相等(B值大小相等、方向相同),则其所受安培力也可运用该式计算。

关于安培力的作用效果,解题中通常遇到的情况举例说明如下:

① 平行通电导线之间的相互作用;同向电流相吸,反向电流相斥。这是电流问磁相互作用的一个重要例证。

② 在安培力与其他力共同作用下使通电导体处于平衡状态,借以测定B或I等待测值。如应用电流天平测定磁感应强度值,应用磁电式电流表测量电流强度。

例题2) 图9-5所示是一种电流天平,用以测定匀强磁场的磁感应强度。在天平的一端挂一矩形线圈,其底边置于待测匀强磁场B中,B的方向垂直于纸面向里。已知线圈为n匝,底边长L当线圈通以逆时针方向,强度为I的电流时,使天平平衡;将电流反向但强度不变,则需在左盘中再加 砝码,使天平恢复平衡。试列出待测磁场磁感应强度B的表达式。

分析和解 本题应着眼于线圈底边在安培力作用下天平的平衡以及电流方向变化后天平调整重新平衡等问题.因此需对线圈及天平进行受力分析,根据平衡条件确定有关量的量值关系。

对于第一种情况,即线圈(设线圈质量为M)通以逆时针方向电流时,根据左手定则判定其底边所受安培力F的方向竖直向上。如果这时左盘中置砝码m可使天平平衡,则应有 ①

第二种情况,即线圈改通顺时针方向电流后,显然其底边所受安培力方向变为竖直向下。左盘需再加砝码 ,以使天平重新平衡,这时则有

由①、②两式可得 ,

根据安培力的计算式,并考虑到线圈的匝数,有 。所以待测磁场的磁感应强度 ,即为所求。

(2)关于洛仑兹力大小的计算式 ,其中 为B与 的方向夹角(见图9-3),由式可知,由于 取值不同,洛仑兹力值亦将随之而变,其中 取 、 值时 为零, 取 时 值最大 。本式的适用范围比较广泛,但在中学物理教学中只讨论带电粒子在匀强磁场中的运动,而且大纲规定,洛仑兹力的计算,只要求掌握 跟B垂直的情况。

关于洛仑兹力的作用效果,解题中通常遇到的情况举例说明如下:

① 在匀强磁场中带电粒子的运动。

a、如果带电粒子的运动速度 垂直于磁场B,即 = ,如图9—9所示,则带电粒子将在垂直于B的平面内做匀速圆周运动,这时洛仑兹力起着向心力的作用.根据牛顿第二定律 ,应为 ,

由此可得,圆运动半径 。角速度 。周期 。粒子动量的大小 。粒子的动能 。

b、如果带电粒子的运动速度 与磁场B不垂直,臂如 锐角,如图9-10所示。则可将 分解为 及 ,其中带电粒子q一方面因 而受洛仑兹力 的作用,在垂直于B的平面内做一个匀速圆周运动;同时,还因 而做一平行于磁场的与苏直线运动。两分运动的合运动为如图9-10所示的沿一等距螺旋线运动,其距轴的半径 ,

螺距 。

文章标签: # 方向 # 物体 # 运动