您现在的位置是: 首页 > 教育趋势 教育趋势

2017山东高考真题_山东17年高考答案

tamoadmin 2024-06-20 人已围观

简介1.2023年山东高考人数2.2022年山东高考英语参考答案及英语真题汇总(已更新)3.2023年山东高考生物难吗4.2009年山东高考理科数学问答试题及答案山东省2023年高考时间科目表:6月7日:语文:9:00-11:30,数学:15:00-17:00,6月8日:物理/历史:9:00-11:30,外语:15:00-17:00;6月9日:化学:8:30-9:45,地理:11:00-12:15,思

1.2023年山东高考人数

2.2022年山东高考英语参考答案及英语真题汇总(已更新)

3.2023年山东高考生物难吗

4.2009年山东高考理科数学问答试题及答案

2017山东高考真题_山东17年高考答案

山东省2023年高考时间科目表:6月7日:语文:9:00-11:30,数学:15:00-17:00,6月8日:物理/历史:9:00-11:30,外语:15:00-17:00;6月9日:化学:8:30-9:45,地理:11:00-12:15,思想政治:14:30-15:45,生物:17:00-18:15。

普通高等学校招生全国统一考试(Nationwide Unified Examination for Admissions to General Universities and Colleges),简称“高考”,是合格的高中毕业生或具有同等学历的考生参加的选拔性考试。

普通高等学校招生全国统一考试。教育部要求各省(区、市)考试科目名称与全国统考科目名称相同的必须与全国统考时间安排一致。参加考试的对象一般是全日制普通高中毕业生和具有同等学历的中华人民共和国公民。

招生分理工农医(含体育)、文史(含外语和艺术)两大类。普通高等学校根据考生成绩,按照招生章程计划和扩招,德智体美劳全面衡量,择优录取。2015年,高考逐步取消体育特长生、奥林匹克竞赛等6项加分项目。

2016年,教育部严禁宣传“高考状元”、“高考升学率”,加强对中学高考标语的管理,坚决杜绝任何关于高考的炒作。2017年4月7日教育部、中国残联关于印发《残疾人参加普通高等学校招生全国统一考试管理规定》的通知。

高考的意义:

1、通过高考可以考上理想大学和喜欢的专业,为今后找工作就业奠定坚实基础,这是高考最大的意义。通过高考这一过程,能够获得未来找工作就业的基本能力。如果不参加高考,不读大学,很有可能今后无法找到理想的工作。

2、通过高考能够检验自己以往的学习成效,为今后的学习发展打下基础,这也是高考的直接意义所在。通过高考的检验,也是今后学习的基本前提。从某种意义上来讲,现在各大高校他们所开设的专业已经十分细,社会分工也非常细。

3、高考是包括绝大多数人在内,通向成功彼岸的唯一途径,也是穷苦人家走上辉煌腾达道路的唯一道路,所以对于大多数人来说,高考的意义就在于决定了今后的人生发展方向。

2023年山东高考人数

济宁2023年高考实行新高考模式,语文、数学、外语安排在在6月7日到6月8日之间。思想政治历史、地理、物理、化学、生物等6个科目中选报3科参加考试。考试时间安排在6月9日至10日。

考试科目时间安排:6月7日9:00至11:30语文;15:00至17:00数学;6月8日15:00至17:00外语,有外语听力测试内容的应安排在外语笔试考试开始前进行。6月9日8:30至9::30物理,11:00至12:00政治,15:00至16:00化学,6月10日8:30至9:30历史,11:00至12:00生物,15:00至16:00地理。

高考注意事项

1、认真检查考试物品,精心做好考前准备。于2023年6月6日17时后,亲自到考点学校(注意校区)熟悉考点学校、考场周边环境,考察行程路线和所需时间。按时打印准考证,可以多打印几份备用。

每科考前,都要仔细检查准考证、居民身份证是否齐全,是否带齐了必需的考试用品。考试期间,矿泉水瓶子不是放到课桌上,以免污染您的试卷、答题卡。

2、务必牢记考试时间,精准测算到场路线。要做好考试出行预案,精准计算您的住所到考点的路线、距离、时间(充分考虑雨天、修路等,上下楼尽量不要乘坐电梯)。要严格遵守入场时间,所有考试科目开考15分钟后,不得进入考点,不要提前交卷出场,也不要拖答。

3、考场实现“天眼”监控,自觉诚信守法应考。济宁市28个考点的所有考场都安装了“天眼”,考试实行全时段、360°无死角视频监控录像。

4、认真学习考试规定,严禁携带手机入场。实行“1+2+1+1+N”次安检制度,即由您的母校-生源学校组织的在校门外的1次安检、考点封闭区入口和考场门口的2次安检,手机智能安检门的安检、您在考场内坐定发卷前的安检和考场内进行的N次随机安检。

5、依据指南填报志愿,按时参加外语口试。特别提醒您填报志愿时,一定要以山东省教育招生考试院《2023年山东省普通高校招生填报志愿指南》为依据,严格按《普通高校招生填报志愿告知书》要求,在规定时间内准确填报各批次高考志愿。您若被春、夏季高考同时录取,须自行上网确认就读高校,逾期不确认的,视为放弃高考录取资格。

另外,根据山东省教育招生考试院要求,凡报考英语、日语、俄语等外语类专业的同学,须在济宁参加外语口试,地点设在济宁职业技术学院。为减轻您的出行压力,外语口试实行网上报名,报名具体要求将于2023年6月中旬,在济宁市教育局官方网站招考专栏上发布,请您及时关注。

6、全力做好个人防护,确保健康参加考试。建议考前避免不必要的外出,不参加聚集性活动。考前3天要自觉开展健康监测,考前3天内有发热等可疑症状的,应立即进行核酸或抗原检测并主动报备。

7、信息时代切莫上当,提高警惕谨防受骗。当前,社会上一些不法分子通过各种方式开展活动,如,利用网络、小广告等兜售所谓“考题”、“答案”、“作弊工具”等,并发布虚假招生宣传信息。

同学们珍惜机会,履行承诺,以饱满的热情、平和的心态参加高考。同时,也衷心希望家长朋友们给予孩子正确引导,不轻信谣言,不帮“倒忙”,不拿孩子的青春赌明天。

2022年山东高考英语参考答案及英语真题汇总(已更新)

2023年山东高考人数大概有98万人。

具体人数:

山东省2023年高考人数98万人,其中春季高考26万人,夏季高考72万人。参加夏季高考统一考试考生67万人,比2022年增加7万人。全省16市共设150个考区,375个考点,22458个考场。

考试科目:

在传统高考地区,高考考4门科目,即语文、数学、外语和理科综合或文科综合;中羡在实行新高考模式的地区,高考是考6门科目卖袭拍,即语文、数学、外语,物理或历史,以及政治、地理、生物、化学四门当中的两门科目。

分值设置:

考生禅巧高考文化总成绩由统一高考的语文、数学、外语3门成绩和考生选择的3门选择性考试成绩组成,满分为750分。统一高考科目的语文、数学、外语每门满分150分,均按原始成绩计入考生高考文化总成绩。

选择性考试科目每门满分100分,其中,首选科目成绩按原始成绩计入考生高考文化总成绩,再选科目成绩按等级赋分后计入考生高考文化总成绩。

高考的注意事项:

1、赴考行程

考前,考生需认真阅读、仔细核对考试时间、考点信息、考生须知等内容。特别是要牢记考试时间、考点位置、考场编号,同时结合考点考场位置、天气及交通等情况,合理安排交通工具,合理规划行程路线。

2、携带物品

赴考时要记得随身携带好《准考证》和省级招生考试机构规定的有效身份证件等必要入场证件。同时,还要注意检查是否带齐省级招生考试机构规定的考试用品。自行打印《准考证》的考生,还应检查是否有《准考证》内容以外的字迹。

3、答题规范

考生作答时要沉着冷静,规范书写,确保字迹清楚、卷面整洁。同时按照要求在指定位置正确填涂信息、在与题号相对应的答题区域内答题,写在草稿纸上或非题号对应的答题区域的答案将是无效的,不得用规定以外的笔和纸答题,不要在答卷(答题卡)上做任何标记。

2023年山东高考生物难吗

2022年全国高考将在2022年的6月7日举行,而山东高考的英语笔试考试将在6月8日的下午举行,同学们结束了英语考试,应该都很想知道英语的参考答案及英语真题。等到英语考试结束,我将第一时间为大家整理出山东高考英语参考答案及英语真题汇总。

同学们如果想要知道自己的考试成绩可以上哪些大学,可以在下方 "输入分数,查看可以上的大学"。

一.2022年山东高考英语真题

二.2022年山东高考真题汇总

2009年山东高考理科数学问答试题及答案

2023年山东高考生物总体来说难度适中。

2023年山东高考生物试卷有多组正确答案,有多种解题方案可供选择,结构不良问题适度开放,考查考生对生物本质的理解,引导中学生物在生物概念与生物方法的教学中重视培养生物核心素养。

山东高考生物试卷存在问题有序开放,考察考生的逻辑推理能力和运算求解题能力,再体现开放性的同时,也考查了考生思维的准确性与有序性。2023山东高考生物试卷难度单单从试卷的试题本身来说,这个和每个人的知识点掌握程度和擅长的题目类型有关系,还和个人的临场发挥有关联,高考考生现场状态非常重要。

高考生物介绍

高考生物是高考必考科目之一。备考时要遵循重点难点突出的原则。高考生物试题涉及的知识点很多,因此需要考生掌握清楚,注意各章节的重点和难点,抓住重点让考生把时间和精力都集中在重点上。同时要结合历年高考的试题,按照高考考点有针对性地学习和复习。

注意实验操作和图示学习。生物中存在大量的实验和图示内容,考试中也会涉及这些内容。考生需要注意练习实验操作和图示学习,理解实验中的原理和过程。通过实验和图示学习的方法,可以更好地理解概念,有助于解决考试中的实际习题和探究题。

注意形成整体化的思维能力,一些题目可能没有出现过。通过讲解的学习,考生需要有形成整体化的思维能力,把多种知识点结合起来。需要考生具备深入分析、归纳总结、综合运用、创新思维等能力,尽可能地强化思维能力和应变能力。

2009年普通高等学校招生全国统一考试(山东卷)

理科数学

本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试时间120分钟。考试结束后,将本试卷和答题卡一并交回.

注意事项:

1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.,并将准考证号条形码粘贴在答题卡上指定位置。

2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上; 如需改动,先画掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸,修正带,不按以上要求作答的答案无效。

4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.。

参考公式:

柱体的体积公式V=Sh,其中S是柱体的底面积,h是锥体的高。

锥体的体积公式V= ,其中S是锥体的底面积,h是锥体的高。

如果事件A,B互斥,那么P(A+B)=P(A)+P(B);R如果事件A,B独立,那么P(AB)=P(A)P(B).

事件A在一次试验中发生的概率是 ,那么 次独立重复试验中事件A恰好发生 次的概率: .

第Ⅰ卷(共60分)

一、选择题:本大题共12小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.集合 , ,若 ,则 的值为( )

A.0 B.1 C.2 D.4

解析:∵ , , ∴ ∴ ,故选D.

答案:D

命题立意:本题考查了集合的并集运算,并用观察法得到相对应的元素,从而求得答案,本题属于容易题.

2.复数 等于( ).

A. B. C. D.

2. 解析: ,故选C. w.w.w.k.s.5.u.c.o.m

答案:C

命题立意:本题考查复数的除法运算,分子、分母需要同乘以分母的共轭复数,把分母变为实数,将除法转变为乘法进行运算.

3.将函数 的图象向左平移 个单位, 再向上平移1个单位,所得图象的函数解析式是( ).

A. B. C. D.

3. 解析:将函数 的图象向左平移 个单位,得到函数 即 的图象,再向上平移1个单位,所得图象的函数解析式为 ,故选B.

答案:B

命题立意:本题考查三角函数的图象的平移和利用诱导公式及二倍角公式进行化简解析式的基本知识和基本技能,学会公式的变形. w.w.w.k.s.5.u.c.o.m

4. 一空间几何体的三视图如图所示,则该几何体的体积为( ).

A. B. C. D.

解析:该空间几何体为一圆柱和一四棱锥组成的,

圆柱的底面半径为1,高为2,体积为 ,四棱锥的底面

边长为 ,高为 ,所以体积为

所以该几何体的体积为 .

答案:C

命题立意:本题考查了立体几何中的空间想象能力,

由三视图能够想象得到空间的立体图,并能准确地

计算出.几何体的体积.

5. 已知α,β表示两个不同的平面,m为平面α内的

一条直线,则“ ”是“ ”的( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

解析:由平面与平面垂直的判定定理知如果m为平面α内的

一条直线, ,则 ,反过来则不一定.所以“ ”是“ ”的必要不充分条件. w.w.w.k.s.5.u.c.o.m

答案:B.

命题立意:本题主要考查了立体几何中垂直关系的判定和充分必要条件的概念.

6. 函数 的图像大致为( ).

解析:函数有意义,需使 ,其定义域为 ,排除C,D,又因为 ,所以当 时函数为减函数,故选A. w.w.w.k.s.5.u.c.o.m

答案:A.

命题立意:本题考查了函数的图象以及函数的定义域、值域、单调性等性质.本题的难点在于给出的函数比较复杂,需要对其先变形,再在定义域内对其进行考察其余的性质.

7.设P是△ABC所在平面内的一点, ,则(   )

A. B. C. D.

解析:因为 ,所以点P为线段AC的中点,所以应该选B。

答案:B。

命题立意:本题考查了向量的加法运算和平行四边形法则,

可以借助图形解答。

8.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的w.w.w.k.s.5.u.c.o.m

产品净重(单位:克)数据绘制的频率分布直方图,其中产品

净重的范围是[96,106],样本数据分组为[96,98),[98,100),

[100,102),[102,104),[104,106],已知样本中产品净重小于

100克的个数是36,则样本中净重大于或等于98克并且

小于104克的产品的个数是( ).

A.90 B.75 C. 60 D.45

解析:产品净重小于100克的概率为(0.050+0.100)×2=0.300,

已知样本中产品净重小于100克的个数是36,设样本容量为 ,

则 ,所以 ,净重大于或等于98克并且小于

104克的产品的概率为(0.100+0.150+0.125)×2=0.75,所以样本

中净重大于或等于98克并且小于104克的产品的个数是

120×0.75=90.故选A.

答案:A

命题立意:本题考查了统计与概率的知识,读懂频率分布直方图,会计算概率以及样本中有关的数据.

9. 设双曲线 的一条渐近线与抛物线y=x +1 只有一个公共点,则双曲线的离心率为( ). w.w.w.k.s.5.u.c.o.m

A. B. 5 C. D.

解析:双曲线 的一条渐近线为 ,由方程组 ,消去y,得 有唯一解,所以△= ,

所以 , ,故选D. w.w.w.k.s.5.u.c.o.m

答案:D.

命题立意:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念基本方法和基本技能.

10. 定义在R上的函数f(x)满足f(x)= ,则f(2009)的值为( )

A.-1 B. 0 C.1 D. 2

解析:由已知得 , , ,

, ,

, , ,

所以函数f(x)的值以6为周期重复性出现.,所以f(2009)= f(5)=1,故选C.

答案:C.

命题立意:本题考查归纳推理以及函数的周期性和对数的运算.

11.在区间[-1,1]上随机取一个数x, 的值介于0到 之间的概率为( ).

A. B. C. D. w.w.w.k.s.5.u.c.o.m

解析:在区间[-1,1]上随机取一个数x,即 时,要使 的值介于0到 之间,需使 或 ∴ 或 ,区间长度为 ,由几何概型知 的值介于0到 之间的概率为 .故选A.

答案:A

命题立意:本题考查了三角函数的值域和几何概型问题,由自变量x的取值范围,得到函数值 的范围,再由长度型几何概型求得.

12. 设x,y满足约束条件 ,w.w.w.k.s.5.u.c.o.m

若目标函数z=ax+by(a>0,b>0)的值是最大值为12,

则 的最小值为( ).

A. B. C. D. 4

解析:不等式表示的平面区域如图所示阴影部分,当直线ax+by= z(a>0,b>0)

过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,

目标函数z=ax+by(a>0,b>0)取得最大12,

即4a+6b=12,即2a+3b=6, 而 = ,故选A.

答案:A

命题立意:本题综合地考查了线性规划问题和由基本不等式求函数的最值问题.要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值,对于形如已知2a+3b=6,求 的最小值常用乘积进而用基本不等式解答. w.w.w.k.s.5.u.c.o.m

第 卷

二、填空题:本大题共4小题,每小题4分,共16分。

13.不等式 的解集为 .

解析:原不等式等价于不等式组① 或②

或③ 不等式组①无解,由②得 ,由③得 ,综上得 ,所以原不等式的解集为 . w.w.w.k.s.5.u.c.o.m

答案:

命题立意:本题考查了含有多个绝对值号的不等式的解法,需要根据绝对值的定义分段去掉绝对值号,最后把各种情况综合得出答案.本题涉及到分类讨论的数学思想.

14.若函数f(x)=a -x-a(a>0且a 1)有两个零点,则实数a的取值范围是 .

解析: 设函数 且 和函数 ,则函数f(x)=a -x-a(a>0且a 1)有两个零点, 就是函数 且 与函数 有两个交点,由图象可知当 时两函数只有一个交点,不符合,当 时,因为函数 的图象过点(0,1),而直线 所过的点一定在点(0,1)的上方,所以一定有两个交点.所以实数a的取值范围是

答案: w.w.w.k.s.5.u.c.o.m

命题立意:本题考查了指数函数的图象与直线的位置关系,隐含着对指数函数的性质的考查,根据其底数的不同取值范围而分别画出函数的图象解答.

15.执行右边的程序框图,输出的T= .

解析:按照程序框图依次执行为S=5,n=2,T=2;

S=10,n=4,T=2+4=6;S=15,n=6,T=6+6=12;

S=20,n=8,T=12+8=20;S=25,n=10,T=20+10=30>S,输出T=30

答案:30

命题立意:本题主要考查了循环结构的程序框图,一般都可以

反复的进行运算直到满足条件结束,本题中涉及到三个变量,

注意每个变量的运行结果和执行情况.

16.已知定义在R上的奇函数 ,满足 ,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间 上有四个不同的根 ,则 w.w.w.k.s.5.u.c.o.m

解析:因为定义在R上的奇函数,满足 ,所以 ,所以, 由 为奇函数,所以函数图象关于直线 对称且 ,由 知 ,所以函数是以8为周期的周期函数,又因为 在区间[0,2]上是增函数,所以 在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0)在区间 上有四个不同的根 ,不妨设 由对称性知 所以

答案:-8

命题立意:本题综合考查了函数的奇偶性,单调性,

对称性,周期性,以及由函数图象解答方程问题,

运用数形结合的思想和函数与方程的思想解答问题.

三、解答题:本大题共6分,共74分。

17.(本小题满分12分)设函数f(x)=cos(2x+ )+sin x.

(1) 求函数f(x)的最大值和最小正周期.

(2) 设A,B,C为 ABC的三个内角,若cosB= , ,且C为锐角,求sinA.

解: (1)f(x)=cos(2x+ )+sin x.=

所以函数f(x)的最大值为 ,最小正周期 . w.w.w.k.s.5.u.c.o.m

(2) = =- , 所以 , 因为C为锐角, 所以 ,

又因为在 ABC 中, cosB= , 所以 , 所以w.w.w.k.s.5.u.c.o.m

.

命题立意:本题主要考查三角函数中两角和差的弦函数公式、二倍角公式、三角函数的性质以及三角形中的三角关系.

(18)(本小题满分12分)

如图,在直四棱柱ABCD-A B C D 中,底面ABCD为等腰梯形,AB//CD,AB=4, BC=CD=2, AA =2, E、E 、F分别是棱AD、AA 、AB的中点。

(1) 证明:直线EE //平面FCC ;

(2) 求二面角B-FC -C的余弦值。w.w.w.k.s.5.u.c.o.m

解法一:(1)在直四棱柱ABCD-A B C D 中,取A1B1的中点F1,

连接A1D,C1F1,CF1,因为AB=4, CD=2,且AB//CD,

所以CD=//A1F1,A1F1CD为平行四边形,所以CF1//A1D,

又因为E、E 分别是棱AD、AA 的中点,所以EE1//A1D,

所以CF1//EE1,又因为 平面FCC , 平面FCC ,

所以直线EE //平面FCC .

(2)因为AB=4, BC=CD=2, 、F是棱AB的中点,所以BF=BC=CF,△BCF为正三角形,取CF的中点O,则OB⊥CF,又因为直四棱柱ABCD-A B C D 中,CC1⊥平面ABCD,所以CC1⊥BO,所以OB⊥平面CC1F,过O在平面CC1F内作OP⊥C1F,垂足为P,连接BP,则∠OPB为二面角B-FC -C的一个平面角, 在△BCF为正三角形中, ,在Rt△CC1F中, △OPF∽△CC1F,∵ ∴ , w.w.w.k.s.5.u.c.o.m

在Rt△OPF中, , ,所以二面角B-FC -C的余弦值为 .

解法二:(1)因为AB=4, BC=CD=2, F是棱AB的中点,

所以BF=BC=CF,△BCF为正三角形, 因为ABCD为

等腰梯形,所以∠BAC=∠ABC=60°,取AF的中点M,

连接DM,则DM⊥AB,所以DM⊥CD,

以DM为x轴,DC为y轴,DD1为z轴建立空间直角坐标系,

,则D(0,0,0),A( ,-1,0),F( ,1,0),C(0,2,0),

C1(0,2,2),E( , ,0),E1( ,-1,1),所以 , , 设平面CC1F的法向量为 则 所以 取 ,则 ,所以 ,所以直线EE //平面FCC . w.w.w.k.s.5.u.c.o.m

(2) ,设平面BFC1的法向量为 ,则 所以 ,取 ,则 ,

, , w.w.w.k.s.5.u.c.o.m

所以 ,由图可知二面角B-FC -C为锐角,所以二面角B-FC -C的余弦值为 . w.w.w.k.s.5.u.c.o.m

命题立意:本题主要考查直棱柱的概念、线面位置关系的判定和二面角的计算.考查空间想象能力和推理运算能力,以及应用向量知识解答问题的能力.

(19)(本小题满分12分)

在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q 为0.25,在B处的命中率为q ,该同学选择先在A处投一球,以后都在B处投,用 表示该同学投篮训练结束后所得的总分,其分布列为

0 2 3 4 5

w.w.w.k.s.5.u.c.o.m p

0.03 P1 P2 P3 P4

(1) 求q 的值;w.w.w.k.s.5.u.c.o.m

(2) 求随机变量 的数学期望E ;

(3) 试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。

解:(1)设该同学在A处投中为事件A,在B处投中为事件B,则事件A,B相互独立,且P(A)=0.25, , P(B)= q , .

根据分布列知: =0时 =0.03,所以 ,q =0.8.

(2)当 =2时, P1= w.w.w.k.s.5.u.c.o.m

=0.75 q ( )×2=1.5 q ( )=0.24

当 =3时, P2 = =0.01,

当 =4时, P3= =0.48,

当 =5时, P4=

=0.24

所以随机变量 的分布列为

0 2 3 4 5

p 0.03 0.24 0.01 0.48 0.24

随机变量 的数学期望

(3)该同学选择都在B处投篮得分超过3分的概率为

;

该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72.

由此看来该同学选择都在B处投篮得分超过3分的概率大.

命题立意:本题主要考查了互斥事件的概率,相互独立事件的概率和数学期望,以及运用概率知识解决问题的能力.

(20)(本小题满分12分)

等比数列{ }的前n项和为 , 已知对任意的 ,点 ,均在函数 且 均为常数)的图像上.

(1)求r的值;

(11)当b=2时,记

证明:对任意的 ,不等式 成立

解:因为对任意的 ,点 ,均在函数 且 均为常数的图像上.所以得 ,当 时, ,当 时, ,又因为{ }为等比数列,所以 ,公比为 ,

(2)当b=2时, ,

则 ,所以

下面用数学归纳法证明不等式 成立.

① 当 时,左边= ,右边= ,因为 ,所以不等式成立.

② 假设当 时不等式成立,即 成立.则当 时,左边=

所以当 时,不等式也成立.

由①、②可得不等式恒成立.

命题立意:本题主要考查了等比数列的定义,通项公式,以及已知 求 的基本题型,并运用数学归纳法证明与自然数有关的命题,以及放缩法证明不等式.

(21)(本小题满分12分)

两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧 上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在 的中点时,对城A和城B的总影响度为0.065.

(1)将y表示成x的函数;

(11)讨论(1)中函数的单调性,并判断弧 上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。

解法一:(1)如图,由题意知AC⊥BC, ,

其中当 时,y=0.065,所以k=9

所以y表示成x的函数为

(2) , ,令 得 ,所以 ,即 ,当 时, ,即 所以函数为单调减函数,当 时, ,即 所以函数为单调增函数.所以当 时, 即当C点到城A的距离为 时, 函数 有最小值.

解法二: (1)同上.

(2)设 ,

则 , ,所以

当且仅当 即 时取”=”.

下面证明函数 在(0,160)上为减函数, 在(160,400)上为增函数.

设0<m1<m2<160,则

,

因为0<m1<m2<160,所以4 >4×240×240

9 m1m2<9×160×160所以 ,

所以 即 函数 在(0,160)上为减函数.

同理,函数 在(160,400)上为增函数,设160<m1<m2<400,则

因为1600<m1<m2<400,所以4 <4×240×240, 9 m1m2>9×160×160

所以 ,

所以 即 函数 在(160,400)上为增函数.

所以当m=160即 时取”=”,函数y有最小值,

所以弧 上存在一点,当 时使建在此处的垃圾处理厂对城A和城B的总影响度最小.

命题立意:本题主要考查了函数在实际问题中的应用,运用待定系数法求解函数解析式的 能力和运用换元法和基本不等式研究函数的单调性等问题.

(22)(本小题满分14分)

设椭圆E: (a,b>0)过M(2, ) ,N( ,1)两点,O为坐标原点,

(I)求椭圆E的方程;

(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且 ?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。

解:(1)因为椭圆E: (a,b>0)过M(2, ) ,N( ,1)两点,

所以 解得 所以 椭圆E的方程为

(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且 ,设该圆的切线方程为 解方程组 得 ,即 ,

则△= ,即

, 要使 ,需使 ,即 ,所以 ,所以 又 ,所以 ,所以 ,即 或 ,因为直线 为圆心在原点的圆的一条切线,所以圆的半径为 , , ,所求的圆为 ,此时圆的切线 都满足 或 ,而当切线的斜率不存在时切线为 与椭圆 的两个交点为 或 满足 ,综上, 存在圆心在原点的圆 ,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且 .

因为 ,

所以 ,

,

①当 时

因为 所以 ,

所以 ,

所以 当且仅当 时取”=”.

② 当 时, .

③ 当AB的斜率不存在时, 两个交点为 或 ,所以此时 ,

综上, |AB |的取值范围为 即:

命题立意:本题属于探究是否存在的问题,主要考查了椭圆的标准方程的确定,直线与椭圆的位置关系直线与圆的位置关系和待定系数法求方程的方法,能够运用解方程组法研究有关参数问题以及方程的根与系数关系.

文章标签: # 所以 # 高考 # 函数