您现在的位置是: 首页 > 教育科技 教育科技
高考题数学理科,高考数学理科大题
tamoadmin 2024-05-16 人已围观
简介1.2011年浙江省理科数学高考题[解]x^2f′(x)+2xf(x)=e^x/x,∴x^2f′(x)=e^x/x-2xf(x),∴f′(x)=[e^x/x-2xf(x)]/x^2,令f′(x)=0,得:e^x/x-2xf(x)=0,∴f(x)=e^x/(2x^2)。令f(x)=e^x/(2x^2)中的x=2,得:f(2)=e^2/8,这说明,当f′(x)=0时,有:x=2。∴当f(x)有极值时,
1.2011年浙江省理科数学高考题
[解]
∵x^2f′(x)+2xf(x)=e^x/x,∴x^2f′(x)=e^x/x-2xf(x),
∴f′(x)=[e^x/x-2xf(x)]/x^2,
令f′(x)=0,得:e^x/x-2xf(x)=0,∴f(x)=e^x/(2x^2)。
令f(x)=e^x/(2x^2)中的x=2,得:f(2)=e^2/8,这说明,当f′(x)=0时,有:x=2。
∴当f(x)有极值时,就在x=2时取得。······①
由x^2f′(x)+2xf(x)=e^x/x,两边取导数,得:
2xf′(x)+x^2f″(x)+2f(x)+2xf′(x)=(xe^x-e^x)/x^2,
∴当f(x)有极值时,有:x^2f″(x)+e^x/x^2=(xe^x-e^x)/x^2,
∴f″(x)=(xe^x-2e^x)/x^4。
∴f″(2)=(2e^x-2e^2)/16=0,∴当x=2时,f(x)没有极值。······②
综合①、②,得:f(x)没有极值,∴本题的答案是D。
2011年浙江省理科数学高考题
2023全国甲卷理科数学试题难度变化相差不大。
高考数学全国卷全面考查数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析等学科核心素养,体现基础性、综合性、应用性和创新性的考查要求,突出理性思维,发挥数学学科在人才选拔中的重要作用。
今年高考数学卷发挥基础学科作用,助力创新人才选拔;创设自然真实情境助力应用能力考查;落实“四翼”考查要求,助力“双减”政策落地。
高考数学全国卷充分发挥基础学科的作用,突出素养和能力考查,甄别思维品质展现思维过程,给考生搭建展示的舞台和发挥的空间。新课标Ⅰ卷第7题重点考查逻辑推理素养,以等差数列为材料考查充要条件的推证。
要求考生判别充分性和必要性,然后分别进行证明,解决问题的关键是利用等差数列的概念和特点进行推理论证。新课标Ⅰ卷第17题,以正弦定理、同角三角函数基本关系式、解三角形等数学内容,考查数学运算素养。
高考数学全国卷在命制情境化试题过程中,在剪裁素材方面,注意控制文字数量和阅读理解难度;在抽象数学问题方面,设置合理思维强度和抽象程度;在解决问题方面,通过设置合适的运算过程和运算量。
力求使情境化试题达到试题要求层次与考生认知水平的契合与贴切。如新课标Ⅰ卷第10题,利用对数函数研究噪声声压水平,通过对声压级的研究,全面考查对数及其运算的基础知识。
高考数学全国卷在反套路、反机械刷题上下功夫,突出强调对基础知识和基本概念的深入理解和灵活掌握,注重考查学科知识的综合应用能力,落实中国高考评价体系中“四翼”的考查要求。
同时,合理控制试题难度,科学引导中学教学,力图促进高中教学与义务教育阶段学习有效衔接,促进考教衔接,引导学生提高在校学习效率,避免机械无效的学习。
如新课标Ⅰ卷第9题,考查统计抽样中样本的基本数字特征,考查考生对样本的平均数、标准差、中位数、极差概念的理解和掌握,不仅注重试题的基础性,而且使基础知识的考查和能力的考查有机结合。
设实数x、y是不等式组{x+2y-5>0,2x+y-7>0,x≥0 y≥0},若x、y为整数,则3x+4y的最小值为
A.14; B. 16; C. 17; D. 19
解:作直线L?:x+2y-5=0,设其与x轴的交点为A(5,0);再作直线L?:2x+y-7=0,设其与L?的
交点(3,1)为B,与y轴的交点(0,7)为C;那么由不等式组{x+2y-5>0,2x+y-7>0,x≥0 y≥0}所规定的区域就是x轴的上方(含x轴),y轴的右方(含y轴),折线ABC的右上方的所围的半开放区域。
由于不等式x+2y-5>0,2x+y-7>0都不带等于号,故折线ABC上的点都不能算在上面指定的区域
内。又x,y是整数,那么最接近这个区域边界的点从右到左依次排列为:(6,0);(5,1);(4,1)
(3,2);(2,4);(1,6);(0,8).共7个点,那么这些点中使3x+4y的值最小的点是点(4,1),其值=3×4+4×1=16,故应选B。