您现在的位置是: 首页 > 教育科技 教育科技

高考数学思路对_高考数学思路对应的题型

tamoadmin 2024-05-16 人已围观

简介思考第三问我们要看图像,由(1),(2)问易得:f(x)的极大值点和极小值点分别为:A(-k,4k^2/e), B(k,0),且在<-k 和>k上单调递增,在-k到k上单调递减。于是很自然的(你要自己画一个图,问交点的问题通常要通过图形来辅助思考)一定有一个区间L(比如(-k/2,k/2)或者[a,b]之类的开集、闭集、左开右闭或左闭右开的集合)使得当m?L时,f(x)与y=m有三个不

高考数学思路对_高考数学思路对应的题型

思考第三问我们要看图像,由(1),(2)问易得:f(x)的极大值点和极小值点分别为:A(-k,4k^2/e), B(k,0),且在<-k 和>k上单调递增,在-k到k上单调递减。于是很自然的(你要自己画一个图,问交点的问题通常要通过图形来辅助思考)一定有一个区间L(比如(-k/2,k/2)或者[a,b]之类的开集、闭集、左开右闭或左闭右开的集合)使得当m?L时,f(x)与y=m有三个不同的交点。

这时我们知道在[-k,k]上,f(x)与y=m一定有一个交点,这样我们只需考虑在x>k和x< -k上f(x)与y=m何时有交点。

x>k时。由于f(x)连续且f(x)在k>=0上的极小值就等于0,因此只需考虑f(x)在k>0上的最大值。f(x)在k>0上单调递增,若对于t是一个实数,若存在x>k使得f(x)=t,则对于任意的0<y0<t, 都存在x0使得:f(x0)=y0。(这件事你看图就能明白,要证明需要大学知识,你能理解就好)。于是我们如果找到一个很大的x, 使得f(x)>4k^2/e, 则说明当m<=4k^2/e时,f(x)与y=m在x>k上必有交点。

于是,我们总能取到一个正整数N,使得:N>2k(只要在数轴上一个一个的数下去,这件事是办得到的,因为2k与2k+1是一个有限的数),令x=N, 于是:

f(x)=(N-k)^2 e^(N/k)

>k^2 e^2

>4k^2

>4k^2/e.

这样我们知道,只要0<m<=4k^2/e, 则f(x)与y=m在x>k上就有交点。

x<-k。易知0<f(x)<4k^2/e。现在只需考虑是否存在t>0使得在x< -k上,f(x)>=t总成立。同样的我们知道:在x< -k上,对于0<a<b, 若存在x1,x2< -k, f(x1)=a, f(x2)=b, 则对于任意的y0:a<y0<b, 必存在x0使得:f(x)=y0。于是对于任意的正数t,一定存在正整数N使得:1/N<t(实际上就是:N>1/t, 这也是可以做到的).

此时遇到问题:当x趋近于负无穷时,(x-k)^2趋近于正无穷,e^(x/k)趋近于0, 则它们相乘要趋近于什么呢?由于f(x)=(x-k)^2 e^(x/k)=(x-k)^2/(e(-x/k)), 那我们就考虑g=|(x-k)^2|=(x-k)^2与h=|e(-x/k)|的大小就好了。

针对于这道题的情况我们可以考察这样一件事:对于任意的正整数n, 存在一个正数x0,对于任意的x>n, e^x>x^n。(可以对n用数学归纳法)。

于是我们得到:存在x0>k>0, 当x<-x0<-k时:

|f(x)|=|(x-k)^2 e^(x/k)|

=|(x-k)^2/x^3|*|x^3/e(-x/k)|

<|(x-k)^2/x^3| -->0, x趋近于负无穷时。

从而我们知道:当0<m<4k^2/e时,在x<-k上,f(x)与y=m必有交点。

综上:若要f(x)与y=m必有3个交点则:0<m<4k^2/e

思路:找到极大值点、极小值点、升降区间,画图,比较,再分析得到结论。

高中数学合集百度网盘下载

链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

文章标签: # lt # gt # 我们