您现在的位置是: 首页 > 高考动态 高考动态

高考物理电学知识点_高考物理电学知识点归纳总结

tamoadmin 2024-07-30 人已围观

简介1.九年级物理电路知识点2.初三物理电学知识点有哪些?3.初中物理电学公式大全4.电路初中物理知识点5.电场的能的性质高二物理教案6.物理公式7.高考第三天考哪几科8.中考物理主要考哪些知识点2023年物理高考难度适中。具体来说,考题难度和往年相比没有明显提高,整体难度处于一个适中的水平。下面从试卷整体难度、知识点覆盖、题型分布和难点预测等方面进行分析。首先,整体难度上,2023年物理高考并没有出

1.九年级物理电路知识点

2.初三物理电学知识点有哪些?

3.初中物理电学公式大全

4.电路初中物理知识点

5.电场的能的性质高二物理教案

6.物理公式

7.高考第三天考哪几科

8.中考物理主要考哪些知识点

高考物理电学知识点_高考物理电学知识点归纳总结

2023年物理高考难度适中。

具体来说,考题难度和往年相比没有明显提高,整体难度处于一个适中的水平。下面从试卷整体难度、知识点覆盖、题型分布和难点预测等方面进行分析。

首先,整体难度上,2023年物理高考并没有出现特别刁钻和难以理解的题目。大多数考生能够通过认真复习和精心准备应对考试。不过,需要注意的是,今年物理试卷中有少数探究性、开放性和拓展性的试题,需要考生具备一定的思维能力和创新意识。

其次,在知识点覆盖方面,2023年物理高考试卷涵盖了全国课标范围内的所有知识点,并注重对知识点的深度和广度进行考查。

例如,力学部分涉及质点运动、牛顿运动定律、万有引力、单位制、机械能守恒等知识点;光学部分涵盖光的本质、光的反射和折射、光的波动性等知识点;电磁学部分则包括静电场、电流和磁场、电磁感应、交流电等知识点,涵盖面广。

再次,在题型分布上,2023年物理高考试卷依然延续了往年的风格,大致比例如下:选择题40%、计算题30%、分析题20%、设计题10%。其中,选择题较为基础,计算题要求具备一定的公式运用和计算能力,分析题和设计题则需要考生具备分析问题和解决问题的能力。

最后,在难点预测方面,2023年物理高考中,可能会出现一些需要突出思维能力和综合运用的难点。例如,机械能守恒、波动光学中的相干、激光、电磁波的全反射和衍射现象、电路中的 6.3伏安定理等难点。考生需要在平时的学习中注重理解和掌握这些难点,并能够在考试中巧妙运用。

综上所述,2023年物理高考难度适中,需要认真复习和准备,注重思维能力的培养和综合运用的训练,才能够取得好成绩。

九年级物理电路知识点

高中物理复习方法

与过去的单科考试相比,综合考试中对考生所掌握基本知识的要求没有太大变化,只是考试的形式有一些改变,考生要在一张卷子上完成生物、化学、物理的考题,有些考题还是这几科知识的综合问题。虽然考题是综合的,但同学们还要先搞好单科复习,只有最基本的东西掌握牢固了,才可能应对复杂情况。考生在复习物理学科时应把握以下几点。

1 构建学科的知识结构

1.1 把握各部分物理知识的重点、难点

物理学科知识主要分力、电、光、热、原子物理五大部分。

力学是基础,电学与热学中的许多复杂问题都是与力学相结合的,因此一定要熟练掌握力学中的基本概念和基本规律,以便在复杂问题中灵活应用。力学可分为静力学、运动学、动力学以及振动和波。

静力学的核心是质点平衡,只要选择恰当的物体,认真分析物体受力,再用合成或正交分解的方法来解决即可。一般来说三力平衡用合成,画好力的合成的平行四边形后,选定半个四边形———三角形,进行解三角形的数学工作就行了。

运动学的核心是基本概念和几种特殊运动。基本概念中,要区分位移与路程,速度与速率,速度、速度变化与加速度。几种运动中,最简单的是匀变速直线运动,用匀变速直线运动的公式可直接解决;稍复杂的是匀变速曲线运动,只要将运动正交分解为两个匀变速直线运动后,再运用匀变速公式即可。对于匀速圆周运动,要知道,它既不是匀速运动(速度方向不断改变),也不是匀变速运动(加速度方向不断变化),解决它要用圆周运动的基本公式。

力学中最为复杂的是动力学部分,但是只要清楚动力学的3对主要矛盾:力与加速度、冲量与动量变化和功与能量变化,并在解决问题时选择恰当途径,许多问题可比较快捷地解决。一般来说,某一时刻的问题,只能用牛顿第二定律(力与加速度的关系)来解决。对于一个过程而言,若涉及时间可用动量定理;若涉及位移可用功能关系;若这个过程中的力是恒力,那么还可用牛顿第二定律加匀变速直线运动的公式来解决。但是这种方法,要涉及过程中每一阶段的物理量,计算起来相对麻烦。如果能用动量定理或机械能守恒来解就会方便得多,因为这是两个守恒定律,如果只关心过程的初末状态,就不必求解过程中的各个细节。那么在什么情况下才能用上述两个定律呢?只要体系所受合外力为零(该条件可放宽为:外力的冲量远小于内力的冲量)时,体系总动量守恒;若体系在某一方向所受合外力为零,那么体系在这一方向上的动量守恒。

振动和波这一部分是建立在运动学和动力学基础之上的,只不过加入了振动与波的一些特性,例如运动的周期性(解题时要注意通解,即符合要求的答案有多个),再如波的干涉和衍射现象等等。

热学有两大部分,分子运动论和气体性质。对于分子运动论,如果去为每条理论寻找实验基础,那么书上的各知识点自然就掌握了;对于气体性质,实质是研究一定质量的理想气体的四个状态参量(压强P、体积V、温度T和内能E)与两个过程量(外界对气体做功W和吸、放热Q)之间的关系。对于一定质量的理想气体首先有理想气体的状态方程: P V /T=C,以及热力学第一定律:外界对气体做功W与气体所吸热量Q之和等于气体的内能增量Δ E。其次, V与W有关系,若气体体积V增加,气体必对外做功;理想气体温度T与内能E有关,若理想气体温度升高,其分子平均平动动能必增大,而理想气体分子间无相互作用,因此分子势能不变,所以其体内能E必增大。这6个物理量的关系清楚了,热学本身的问题就解决了。至于热学和力学的综合问题,以力学为基础,将气体压力F用气体压强P和受力面积S表示,即, F=PS。

这里要提醒大家,物理与化学的结合点之一便是在热学,所以大家要在复习化学时多注意跟气体有关的各种现象和规律。

电学是物理学中的另一大部分,可分为:静电、恒定电流、电与磁、交流电和电磁振荡、电磁波5部分。

静电部分包括库仑定律、电场、场中物以及电容。电场这一概念比较抽象,但是电荷在电场中受力和能量变化是比较具体的,因此,引入电场强度(从电荷受力角度)和电势(从能量角度)描写电场,这样电场就可以和力学中的重力场(引力场)来类比学习了。但大家要注意,质点间是相互吸引的万有引力,而点电荷间有吸引力也有排斥力;关于电势能完全可以与重力势能对比:电场力做多少正功电势能就减少多少。为了使电场更加形象化,还人为加入了描述电场的图线———电场线和等势面,如果能熟练掌握这两种图线的性质,可以帮助你形象理解电场的性质。

场中物包括在电场中运动的带电粒子和在电场中静电平衡的导体。对于前者,可以完全按力学方法来处理,只是在粒子所受的各种机械力之外加上电场力罢了。对于后者要掌握两个有效的方法:画电场线和判断电势。

  恒定电流部分的核心是5个基本概念(电动势、电流、电压、电阻与功率)和各种电路的欧姆定律以及电路的串并联关系。特别强调的是,基本概念中要着重理解电动势,知道它是描述电源做功能力的物理量,它的大小可以通俗理解为电源中的非静电力将一库仑正电荷从电源的负极推至正极所做的功。对于功率一定要区分热功率与电功率,二者只有在电能完全转化为内能时才相等。欧姆定律的理解来源于功能关系,使用时一定要注意适用条件。

电与磁的核心是三件事:电生磁、磁生电和电磁生力,只要掌握这三件事的产生条件、大小、方向,这一部分的主要矛盾就抓住了。这一部分的难点在于因果变化是互动的,甲物理量的变化会引起乙物理量的变化,而乙反过来又影响甲,这一变化了的甲继续影响乙……这样周而复始。

交流电这一部分要特别注意变压器的原副线圈的电压、电流、电功率的因果关系,对于已经制作好的变压器,原线圈的电压决定副线圈的电压(电压在允许范围内变化),而副线圈的电流和功率决定原线圈的电流和功率。

电磁振荡、电磁波部分的难点在于L C振荡回路中的各物理量变化,只要弄清电感线圈和电容的性质,明确物理过程,掌握各物理量的变化规律,问题就不难解决。

在物理学科内,电学与力学结合最紧密、最复杂的题目往往是力电综合题,但运用的基本规律主要是力学部分的,只是在物体所受的重力、弹力、摩擦力之外,还有电场力、磁场力(安培力或洛仑兹力),大家要特别注意磁场力,它会随物体运动情况的改变而变化的

光学包括几何光学和物理光学。几何光学的主要内容是光线的传播规律(光的直线传播、光的反射和光的折射)和几种镜子的性质(平面镜、棱镜和透镜)。在解决几何光学的问题时经常用到光路可逆的性质和“像”的概念。

物理光学主要讲人们对光的本性的认识的发展过程。复习时只要按照历史的发展,掌握几种主要学说(微粒说、波动说、电磁说和光子说)的代表人物、实验基础(现象及本质)和在当时所遇到的困难,就不难把整块知识联系在一起。

原子物理部分实际反映的是人们对微观世界的了解过程。

爱因斯坦的质能方程建立在核结构理论的基础之上。人类对核能的开发又是爱因斯坦理论的实际应用。

1.2 重视实验能力培养

1.2.1 要熟练掌握基本仪器的使用方法

实验仪器仪表的作用是可以测量物理量,所以大家首先要会正确读取数据,数据直接反映了你的测量精度,影响测量的可信度。对于实验仪器不仅要会从上面读取数据,而且要知道这些仪器能测量什么物理量,尤其像那些多功能的仪器。比如打点计时器,它可以测量物体一段运动的时间,匀变速运动的加速度和某点的速度;如果知道电流表(电压表)的内阻,那么电流表可当作电压表(电流表)使用……等等。这对于设计新实验很有好处。

1.2.2 要选择恰当的方法处理数据

对于直接测量量(从仪器仪表上直接读取)的数据,最简单处理方法就是取平均值。对于间接测量量,一种是可根据物理规律,由直接测量量计算出来,再求平均值;另一种是根据物理规律,画图线求平均值。比如测电池的电动势和内阻的实验,改变外阻,得到几组U、I数值,在U-I图上,标出各个数据点,画出一条直线,使各个数据点均匀分布在直线两旁(偏离直线太远的数据,一定是错误的,应删除),该直线可代表这几组数据的真实值,而要测的电动势ε值是图线在U轴上的截距,内阻r是图线的斜率。画图线处理实验数据时,要注意,图线最好是直线,这样可直接看出被测量或规律。

1.2.3 要善于设计实验

中学实验一般可分为测定性的和验证性的,测定性的实验是测量某个物理量;而验证性的实验,除了测量物理量以外,还要验证这些物理量的数量关系。要设计从没做过的实验,首先应熟悉课本中的各个实验,掌握基本的实验思想和方法。这是设计实验的基础。

设计实验时,首先要明确实验目的,如果是测定性的,就根据实验仪器的功能,找到恰当的物理规律,把被测的物理量与实验仪器能测的物理量联系起来,设计方案即可。对于验证性的实验要注意,所测的各物理量要从正确的途径得到。

对全新的实验也不要害怕,只需牢记一点:实验原理只能来源于你所学过的物理规律。只要牢固掌握基本规律,善于运用,不管哪一部分的难题都能解决。

2 牢固掌握基本概念和基本规律

2.1 深刻理解基本概念是解题的关键

正确解决物理问题的首要要求是清楚基本概念和基本规律,这样才能抓住主要矛盾,找到解题关键。

概念重在理解,一定要清楚它是从什么现象引出的,用来描述什么的(反映什么本质),怎样定义的(记住定义式),由哪些因素决定(决定式),跟学过的哪些物理量有关系(包括数量关系和因果关系)等等。比如加速度这一概念,它是因描述物体运动变化而引入的,它反映了物体速度变化的快慢和方向,但加速度是由物体受力和物体质量决定。求解加速度既可从定义式出发,也可以从一系列运动学公式出发,还可以从动力学关系角度找它与各力的关系求解。求解其他物理量时,也是这两条路,一是从定义出发,一是从它跟其他物理量的关系出发。遇到新问题时,也要先看清物理本质,确定涉及哪些基本概念,从概念联系到规律,就找到解题的下手之处了。

2.2 掌握基本规律,找出解题思路

一般同学对规律的重视程度要比概念深一些,但往往注重规律所反映的数量关系,而忽视因果关系。其实规律就是概念间的联系,而各个基本概念之间常常存在因果关系,只有善于把握这种因果关系才能抓住解决问题的关键。事物的变化必有原因,掌握了因果,就等于找到了事情发展的途径,对于物理学科而言,物理过程清楚了,解题思路也就有了。

另外,运用规律解决问题时还要注意规律的来源、适用条件。

3 注重知识的联系,解好新题型

3.1 图像与知识的联系

物理中的运动学、振动和波以及热学是运用图像最多的地方,但在综合考试中图像所涉及的问题已经超出了这些部分,它不仅要求考生会解答已画好的图像问题,有时还需要考生利用图像解决物理问题(比如实验的数据处理),所以同学们要重视这个问题,尽快学会解决方法。

其实图像问题并不神秘,先要看清横纵坐标各表示什么物理量,这些物理量在题目所涉及的物理过程中存在什么样的关系,写出关系式,然后再对比图像上所反映的关系,解决问题。

在解答计算题时也可利用图像,比如涉及物体运动的题目,可画V-t图,因为V-t图线的斜率表示物体的加速度,图线与时间轴所围面积表示物体的位移,解决问题时,画出V-t图线既直观,又能反映全过程,有时还使解题过程变得简捷。

3.2 学科内与跨学科的联系

对于跨学科综合题,考生不必害怕,题目是综合的,但一旦分析解答又必然是分科进行的,就像回答原来单科考试的物理、化学、生物题一样。

3.3 运用新、旧知识的联系,解好信息题

综合考试中有一类这样的题目,在题目中介绍给考生没有学过的概念或规律,要求考生当场学习并简单应用。

这类题目一是考查学生的理解能力,二是考查考生将新旧知识结合在一起运用的能力,其实主要考查灵活运用课本知识的能力。因此,其难点在于对基本知识的理解和应用。

对于此类题目出现的新信息,考生不必恐惧,因为它只需要考生基本理解,不要求灵活应用。

无论新型题还是传统题,都有难题,考生解不出或发生错误的根本原因是物理过程不清,研究对象不清。如果每解决一个问题都能想清物理过程,明确研究对象,没有什么难题攻克不了。

初三物理电学知识点有哪些?

以下是九年级物理电路知识点

简化电路图:

电学综合题是每年中考的必考题,但是电路图复杂多变,部分同学可能会觉得难以入手,这个时候就需要用到简化电路的技巧。常用的简化电路的方法有:

1、从整体角度分析电路。从电源正极(或负极)出发,先看电路的干路部分,再看支路部分(如果有支路)。

2 、判断电路中电表测量的对象。判断电压表测量的是哪个电阻(或哪个用电器)的电压,将电压表并联在该电阻(或用电器)的两端;判断电流表测量的是干路还是支路的电流,画上串联的电流表。

3、判断滑动变阻器(如果存在)的最大值、最小值分别在哪一端,以及接入电路中的方式。

4、电流表本身阻值非常小,等同于导线电阻,电压表本身阻值非常大,等同于断路,因此:电流表=导线,电压表=断路,把电流表用导线代替,把电压表及其接入电路的导线去掉。

识别串并联:

正确识别串、并联电路是初中物理的重要知识点之一,会识别电路是学习电路连接和电路计算的基础,对于电路的识别要紧紧抓住串联电路和并联电路的基本特征,而不应单单从形状上去分析。下面提供几种识别串并联电路的技巧:

1、观察连接方法,串联电路"逐个顺次,一一连接",并联电路"首首相接,尾尾相接"。

2 、让电流从电源正极出发经过各用电器回到电源负极,观察途中是否分流。

3、逐个拆除电路中的用电器,根据其他用电器有无电流通过来识别。

判断电路故障:

电路出现故障,一般有两种情况:(1)发生短路;(2)发生断路。在不同情况下,电压表和电流表的示数不同,故障也不同

常见的电路故障和处理方法有:

1、电灯故障时先分析电路连接方式:

(1)两灯串联时,如果只有一个灯不亮,则此灯一定是短路了;如果两灯都不亮,则电路一定是断路了。

(2)两灯并联,如果只有一灯不亮,则一定是这条支路断路;如果两灯都不亮,则可能是干路断路或者两条支路都断路。※在串并联电路中,故障原因不能是全部用电器短路,因为如果全部用电器短路,电源会被烧坏。

初中物理电学公式大全

物理有三个重要的物理量—电流、电压、电阻。那么,除了这些初三物理电学还有哪些知识点呢?

物理知识点

电路连接方式 串联电路、并联电路是电路连接的基本方式。

理解:识别电路的基本方法是电流法,即当电流通过电路上各元件时不出现分流现象,这几个元件的连接关系是串联,若出现分流现象,则分别在几个分流支路上的元件之间的连接关系是并联。

导体和绝缘体 容易导电的物体叫导体,金属、人体、大地、酸碱盐的水溶液等都是是常见的导体。不容易导电的物体叫绝缘体,橡胶、塑料、玻璃、陶瓷等是常见的绝缘体。

物理电学概念辨析

电荷的定向移动形成电流,这是电流的形成定义,简单便于理解;电压是形成电流的原因,没有电压就没有电流;电阻是指导体对电流的阻碍作用,即阻碍作用越大,电流越小。

物理电学表示符号

电流、电压、电阻三物理量分别用I、U、R表示,而单位表示字母分别为A(安培)、V(伏特)、Ω(欧姆)。

物理电学工具的使用

电流表是测量电流的工具;电压表是测量电路两端电压的工具;调节电路中的电流和用电器两端的电压,可以使用滑动变阻器。

电功(W)、电功率(P)

物理学中电功没有确切的定义,只是描述性的,当电能转为其它形式能时,就说做了电功。即电功就表示有多少电能转化为其它形式的能,如果知道了电功的多少,就知道了消耗多少电能。而用电器单位时间内消耗的电能叫做电功率。电功率的大小不仅取决于消耗电能的多少,也取决于所用的时间的长短。

电路初中物理知识点

 初中物理电学公式有哪些?正在备考的考生可以看看,下面由我为你精心准备了“初中物理电学公式大全”,持续关注本站将可以持续获取更多的考试资讯!

初中物理电学公式大全

 (1)电流强度定义式:I=Q/t

 (2)电阻与电阻率:R=馤/S

 注:裎?牧系缱杪剩琇为导体长度,S为导体横截面积。中考不要求用该公式计算。

 (3)欧姆定律公式:I=U/R

 (4)串联电路公式

 电流处处相等:I=I1=I2

 电压累加关系:U=U1+U2

 电阻累加关系:R=R1+R2

 (5)并联电路公式

 电压处处相等:U=U1+U2

 电流累加关系:I=I1+I2

 等效电阻公式:R=R1R2/(R1+R2)

 (6)电功公式:W=UIt

 (7)电功率公式:P=UI

 (8)电功与电功率关系式:W=Pt=UIt=UQ

 (9)电功率推导式:P=I2R=U2/R

 (10)电功推导式:W=I2Rt=U2t/R

 (11)焦耳定律公式Q=I2Rt

 (12)焦耳定律推导式:Q=I2Rt=U2t/R

拓展阅读:电学知识点总结

 1、电路:把电源、用电器、开关、导线连接起来组成的电流的路径。

 2、通路:处处接通的电路;开路:断开的电路;短路:将导线直接连接在用电器或电源两端的电路。

 3、电流的形成:电荷的定向移动形成电流。(任何电荷的定向移动都会形成电流)

 4、电流的方向:从电源正极流向负极。

 5、电源:能提供持续电流(或电压)的装置。

 6、电源是把其他形式的能转化为电能。如干电池是把化学能转化为电能。发电机则由机械能转化为电能。

 7、在电源外部,电流的方向是从电源的正极流向负极。

 8、有持续电流的条件:必须有电源和电路闭合。

 9、导体:容易导电的物体叫导体。如:金属,人体,大地,盐水溶液等。导体导电的原因:导体中有自由移动的电荷;

 10、绝缘体:不容易导电的物体叫绝缘体。如:玻璃,陶瓷,塑料,油,纯水等。原因:缺少自由移动的电荷

 11、电流表的使用规则:①电流表要串联在电路中;②电流要从"+"接线柱流入,从"-"接线柱流出;③被测电流不要超过电流表的量程;④绝对不允许不经过用电器而把电流表连到电源的两极上。实验室中常用的电流表有两个量程:①0~0.6安,每小格表示的电流值是0.02安;②0~3安,每小格表示的电流值是0.1安。

 12、电压是使电路中形成电流的原因,国际单位:伏特(V);常用:千伏(KV),毫伏(mV).1千伏=1000伏=1000000毫伏。

 初中物理电学公式考试难点

 教学中发现,有些学生面对电学计算题,难以找出已知量和未知量之间的关系,解题存在畏难情绪,要么不知从何入手,要么解题中出错。这是因为他没有一个正确的解题思路。要建立正确的解题思路,首先要掌握基础知识,熟记公式,然后认真读懂题目,充分了解已知条件和题目要求。题目中如果有图像,就要充分利用图像,从图像中获得有用信息,用在解题当中。

 (1)向下推导,认真阅读题目,找出题目中的已知条件,联系相关的物理公式,顺向思维,推想:已知这些条件,根据相关公式,就可求出另一物理量。例如:关于某一元件的电压U和电阻R已知,求出的新物理量也许是题目所要求出的,也许对后续解题有帮助。

 (2)向上倒推,认真阅读题目,弄清题目要求,联系相关的物理公式,逆向思维,倒推:要求出该物理量,需要知道哪些物理量呢?电学计算题确实不难,从上可以看出,任何一个电学公式(除计算电功的公式外)都是三个物理量之间的关系。所以电学题的解法我们可以归类为“已知两个物理量求第三个物理量”的简单题型中。电学题无非就是建立串、并联电路进行出题,而已知条件就是电流、电压、电阻(电功或电功率),如果其中两个已知条件恰是某一公式中两个对应的物理量,即为突破口,下一步的计算就显得顺理成章。

电场的能的性质高二物理教案

初中物理电学知识点总结

1、电路:把电源、用电器、开关、导线连接起来组成的电流的路径。

2、通路:处处接通的电路;开路:断开的电路;短路:将导线直接连接在用电器或电源两端的电 路。

3、电流的形成:电荷的定向移动形成电流.(任何电荷的定向移动都会形成电流)

4、电流的方向:从电源正极流向负极.

5、电源:能提供持续电流(或电压)的装置.

6、电源是把其他形式的能转化为电能.如干电池是把化学能转化为电能.发电机则由机械能转化为 电能.

7、在电源外部,电流的方向是从电源的正极流向负极。

8、有持续电流的条件:必须有电源和电路闭合.

9、导体:容易导电的物体叫导体.如:金属,人体,大地,盐水溶液等.导体导电的原因:导体中有自由 移动的电荷;

10、绝缘体:不容易导电的物体叫绝缘体.如:玻璃,陶瓷,塑料,油,纯水等. 原因:缺少自由移动的 电荷

11、电流表的使用规则:①电流表要串联在电路中;②电流要从"+"接线柱流入,从"-"接线柱流出;③被测电流不要超过电流表的量程;④绝对不允许不经过用电器而把电流表连到电源的两极上.

实验室中常用的电流表有两个量程:①0~0.6安,每小格表示的电流值是0.02安;②0~3安,每小格表示的电流值是0.1安.

12、电压是使电路中形成电流的原因,国际单位:伏特(V);

常用:千伏(KV),毫伏(mV). 1千伏=1000伏=1000000毫伏.

13、电压表的使用规则:①电压表要并联在电路中;②电流要从"+"接 线柱流入,从"-"接线柱流出;③被测电压不要超过电压表的量程;

实验室常用电压表有两个量程:①0~3伏,每小格表示的电压值是0.1伏; ②0~15伏,每小格 表示的电压值是0.5伏.

14、熟记的电压值:①1节干电池的电压1.5伏;②1节铅蓄电池电压是2伏;③家庭照明电压为220伏;④安全电压是:不高于36伏;⑤工业电压380伏.

15、电阻(R):表示导体对电流的阻碍作用.国际单位:欧姆(Ω);

常用:兆欧(MΩ),千欧(KΩ);1兆欧=1000千欧; 1千欧=1000欧.

物理公式

作为一位无私奉献的人民教师,借助教案可以让教学工作更科学化。教案要取材内容合理,切合课程宗旨,怎样写教案才更能起到其作用呢?下面小编给大家带来教案模板,希望对大家有所帮助。

#电场的能的性质高二物理教案篇1#

一、学生情况分析

本学期高二年级物理课教学,根据学生的成绩分析得出,学生基础普遍比较薄弱,对必修1、2内容掌握比较好的学生不多。学生基本知识点落实不够好,学习效果不明显。所以在本学期的教学中应注重基础知识回顾,重点是与会考知识点的结合。恰当的处理教学内容的深度与难度。以会考要求为准。

二、本学期教材分析

选修3—2分为三章内容,第一章《电磁感应》,第二章《楞次定律和自感现象》,第三章《交变电流》,第四章《远距离输电》,第五章《传感器及其应用》。在本模块的学习,学生将比较全面地学习物理学及其技术应用,了解它与社会发展以及人类文化的互动作用。通过第一章《电磁感应》第三章《交变电流》第五章《传感器及其应用》的学习加深对世界的物质性和物质运动的多样性的认识。本模块中的概念和规律是进一步学习物理学的基础,是高中物理核心内容的一部分。

三、本学期教学目标

本学期的教学重点为在会考的要求上完成选修3—2的教学。在后半个学期的时间内对高一必修内容进行相应的复习。旨在期未的会考考试中让学生以充足的知识与信心去通过它。

四、提高教学质量措施

1、客观分析学生的实际情况,用有效的教学手段和复习手段;

2、仔细研究教学指导意见与会考要求,认真备课,准确把握教学的知识点与难度,以及学生的学习动态,提高课堂的教学效果;

3、多与学生进行互动交流,解决学生在学习过程中遇到的困难与困惑;

4、认真积极批发作业、试卷等,及时反馈得到学生的学习信息,以便适时调节教学;

5、尽量多做实验,多让学生做实验,激发学生兴趣,增加感性认识,加深理解;

6、认真做好教学分析归纳总结工作,教师间经常互相交流,共同促进。

#电场的能的性质高二物理教案篇2#

一、指导思想

以中学物理教学大纲为纲,以新编中学物理教材为本,在落实基础知识,形成基本技能多下功夫。以培养学生的创新精神和实践能力为目标,以校备课组为主体,注重研究新教材教学的特点和规律,积极探究课堂教学模式,优化课堂教学结构,深入推进课程改革,全面提高教师素质和物理教学质量。以校教科处为指导,团结奋斗,发扬“团结敬业求实创新”的精神,认真实施高中新课改、全面完成教学教研任务。

二、具体工作措施

1、一如既往的做好集体备课,继续加强学科周集中教研活动和日常研讨机制。提前思考每周集中备课组活动的议题和内容,并将不同的议题内容分配教师个人,特别要做好集体备课中的说课环节,提前分配任务,说课老师早做准备,提前准备发言提纲,说课完毕,全组认真讨论,根据集体意见认真修改。在集体备课的前提下,各位教师要做好二次备课

2、及时做好每次周考的质量分析,并针对教学中存在的问题提出教学整改措施。我们年轻教师要多学习,多钻研,多听课,力争在大幅度提高自己的教育教学水平的同时,发挥好教学生力军的作用。使听课、评课常态化。

3、为了达成目标和,本学期要真正做到降低难度,减少内容,加强训练,反复记忆,尤其在课堂上,要真正落实先学后教、精讲多练的原则。要提高课和作业的效率。认真贯彻新课程理念,继续深入研究提高课堂教学效率的具体方法,坚定不移地推行“高效课堂”的课堂教学模式,紧紧围绕教育教学目标,

加强教育教学过程管理,注重打牢学习的基础,突出学习主动性要求,规范学习行为和习惯,坚持教学班区分层次教学、分类重点指导,提高教育教学质量。

4、深入教室,深入学生,增加亲和力,多找学生谈心,从多方面给学生以鼓励和帮助。规范作业要求,提高作业质量。统一、精选作业内容,严格控制作业量,并做到分不同层次教学班提出不同要求。对于学习有困难的学生要经常沟通。

#电场的能的性质高二物理教案篇3#

一、指导思想

新的学年我们要积极学习中华人民共和国教育部制定的普通高中《物理课程标准》(实验),认识物理课程的性质,领会物理课程基本理念,了解物理课程设计的基本思路。通过学习物理课程总目标和具体目标,使我们的物理教学工作更科学化、规范化、具体化。认真学习新的物理教学大纲,明确必修物理课和选修物理课的教学内容和要求,结合现行使用的教材做好调整。学习有关教育改革和教学改革理论和经验,从提高学生全面素质、对每一个学生负责的基本点出发,根据各校、各班学生的具体情况,制定恰当的教育教学与目标要求,使每一个学生在高中阶段都能得到发展和进步。

积极努力改进教研活动的形式,丰富教研活动的内容,做到教材教法专题化,教研活动课题化,青年教师规范化。教材教法专题化是通过每一次活动解决几个问题,在发现问题和解决问题的过程中使教师的专业水平和素质得到提高;教研活动课题化是通过校本教研的形式对具体课题的研究,通过课题研究的过程,使我们从经验型教师项研究型教师转化;青年教师规范化是对刚开始参加高中教学工作的教师,在教材处理、教学要求、教学方法等方面进行规范化的研究,请经验丰富的教师传经送道,尽快地适应高中教学要求和提高自身素质。

二、教学要求

1、认真钻研教学大纲及调整意见、体会教材编写意图。注意研究学生学习过程,了解不同学生的主要学习障碍,在此基础上制定教学方案。要特别注意继续培养学生良好的学习习惯和思维习惯,充分调动学生学习主动性,要认识到学生能力培养与学习习惯、思维习惯有极大的相关性。

2、要特别强调知识与能力的阶段性,强调掌握好基础知识、基本技能、基本方法,这是能力培养的基础。对课堂例题与习题要精心筛选,不要求全、求难、求多,要求精、求少、求活,强调例题与习题的教育教学因素,强调理解与运用。

3、加强教科研工作,提高课堂效率。要把课堂教学的重点放在使学生科学地认识和理解物理概念和规律、掌握基本科学方法、形成科学世界观方面。要充分利用现代教育技术手段,提高教育教学质量和效益。

4、高考改革在联系实际、能力立意等方面不断加大力度,同时高考的改革也对高中物理会考提出新的要求,北京市教委对高中物理会考工作进行了较大的调整和改革,广大教师要在搞好日常教学工作的同时,注意学习和研究,努力使教学工作适应当前教育改革形势的发展。

5、教学改革的重点和出路在于努力提高课堂教学的质量。在高二物理教学中,应特别注意处理好如下三个关系:

(1)知识和能力的关系:高中物理教学既传授知识,又培养能力,二者密不可分,课堂教学中要注意把二者有机地结合起来。物理学科要培养的能力主要有:观察和实验能力;抽象和概括、推理和判断、分析和综合等思维能力及科学的语言表达能力;应用数学处理物理问题的能力以及分析和解决实际问题的能力。思维能力,包括逻辑思维和形象思维在内,是物理学科要培养的重要能力。高二物理比起高一物理,学习内容更为抽象,近代物理部分更要求学生有较高的思维能力,因此在教学中要注意教学方法,注重能力的培养和训练。

(2)理论和实验教学的关系:物理学科的特点之一就是它是以实验为基础的。科学,加强实验教学可以丰富学生的感性认识,提高学生学习物理的兴趣和积极性,同时培养和提高实验能力也是物理学科本身的教学要求和任务。

本学期的教学内容以电磁学为主,这一部分本身也需要加强实验教学。理论密切联系实际,也是物理学科的特点之一,在教学中应充分体现这一特点,以培养学生良好的学风。

(3)会考与高考的关系:高二年级是高中阶段承上启下的年级,高二年级末要进行高中毕业会考,按照要求应于会考之后进行文理分班,进入高三年级的学习。但实际上高二学生中已有很多人明确了学文或学理的意向,甚至有的学校在高二年级就开始文理分科教学。由于所有高中学生都必须通过会考,这是高中物理教学的最低标准,因此即使是学文科的学生也不能放松物理的学习,对于学习理科的学生更要考虑他们进一步学习的需要,所以在高二的教学中要为高三的学习打下必要的基础。

三、本学期教学进度安排

本学期共20周,实际安排授课时间17周,按每周4课时计算,共68课时。期中练习安排在第11周,期末练习安排在第21周。建议各章的教学周数为:

第十六章电磁感应重点章节3、5周(其中复习1、5周)

第十七章交变电流2周

第十八章电磁场和电磁波1、5周

复习电磁场总复习1周

期中复习、练习1周

第十九章光的传播1、5周

第二十章光的波动性1、2周

第二十一章量子初步1周

学生实验1周

期末复习、练习2周。

#电场的能的性质高二物理教案篇4#

一、指导思想

按照学校教务处的教育方针全面开展物理教学,开展素质教育,根据学生现状不断改进基础知识、基础物理思想和方法的教学,面向全体学生,以人为本,开发学生智力,培养学生分析问题的能力。因材施教,分层次教学,大力提高学生的思维能力。

二、教学目标

通过教学,学生的能力可以得到提高。学生可以独立完成教材中的习题,在老师的指导下完成老师课后布置的习题,也可以在其他参考书中做一些习题,从而逐步培养学生对物理的热爱,达到提高学生综合素质的目的。

三、教学方法

针对这个档次的整体成绩,重点是打好基础,具体措施如下:

1、精致简洁

A、阐述:首先,概念的介绍和解释一定要清晰。为此,我们应该反复强调关键内容,用更多的例子介绍和理解关键概念,结合情况进行教学,这是课程改革的要求。其次,要把握进度,不能急功近利,尤其是在难教的情况下。b,简洁:这学期练习题肯定很多。如何高效地获得效果是一个值得探讨的话题,尤其是在习题的练习和讲解中。作业和课堂练习都是打算在上层的基础上进行分类,这样就有了纵向和横向。

2、及时反馈

这学期课内和课后应该有比较完整的反馈机制。比如在课堂上,作业有问题的同学要和他们交流,了解问题,以便及时改进。学习有困难的同学要经常交流。

四、教材分析

新的物理课程标准改变了原有的物理课程模式,高一学习了《必修物理1》和《必修物理2》两本教材,主要在于基础学习。现在是高二,文理选修模块不一样。文科选修模块是物理1—1,主要研究基础内容的理解。对于理科3门选修课的物理系列,本系列的重点是要求学生对这门知识及其应用有更深入的了解。在物理选修3—1的整本书里,主要研究的是电学和磁学,在整个物理中可以说是比较难的,而且和必修模块里的内容联系紧密。选修3—2深化选修3—1,电与磁相连形成电磁学,再深化电流。

翔宇中学高二理科班的学生基础较好,但没有养成良好的学习习惯,计算能力较差,逻辑思维能力有待提高。所以一方面要充分了解他们,多和他们交流,给他们信心,提高他们学习物理的兴趣;另一方面,要抓住课堂的主体地位,注重技能和兴趣,提高学生的整体素质,为以后的考试和高考打下坚实的基础。

#电场的能的性质高二物理教案篇5#

一、仔细分析学生的情况

物理是理科生的必修课,大部分理科生知识不够,尤其是基础知识。经过高中一年的学习和训练,物理情景和物理模型的建立有待加强,知识点的连贯性有待进一步提高,独立分析物理过程和解决物理问题的`能力有待加强和提高。

二、认真分析教材,明确教学任务

这学期理工科的科目是选修课3—1和3—2,包括静电场、恒流、磁场、电磁感应、交流电、传感器。

根据新课程标准的要求,我们应该认真组织教学,从课堂上要求效率和质量。

在知识方面,使学生掌握基础知识、基本技能、基本方法和基本物理思想;在知识和能力方面,在传授知识的同时,也注重培养分析问题和解决问题的能力,在课堂教学中注重两者的有机结合;

情感态度,注重培养学生良好的学习习惯,规范问题解决,充分调动学生学习的主动性和积极性。努力在考试中稳步提高学生成绩。

三、主要工作

1、做好思想工作,增强学好物理的信心。因为物理理解能力强,中学生理解能力有限,所以害怕。因此,他们经常在课堂上介绍学习方法,为学生做思想工作,使学生对物理有深刻的理解,掌握学习物理的规律和方法。

2、讲求质量,提高能力,从教学角度扎实做好教学工作。认真学习新《物理课程改革标准》,利用集体备课时间交流经验,将理论学习成果渗透到课堂教学中。

3、仔细研究教学大纲,明确本学期的教学要求。我既然教一个实验班和一个普通班,就要注意让每个班针对不同的学生有不同的侧重点,进一步做好不同层次的教学。做好每次课后的反思。

4、每个班的工作量要适中,可以及时纠正,反馈。学生的作业要整批改,这样才能充分掌握学生的情况。

5、利用自习课等时间段,加强对学生的引导,不仅是优秀率,还有全体员工的平均分。

##

高考第三天考哪几科

高中物理公式总结

物理定理、定律、公式表

一、质点的运动(1)------直线运动

1)匀变速直线运动

1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as

3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t

7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}

9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

注:

(1)平均速度是矢量;

(2)物体速度大,加速度不一定大;

(3)a=(Vt-Vo)/t只是量度式,不是决定式;

(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

2)自由落体运动

1.初速度Vo=0 2.末速度Vt=gt

3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh

注:

(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动

1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)

3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)

5.往返时间t=2Vo/g (从抛出落回原位置的时间)

注:

(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

(3)上升与下落过程具有对称性,如在同点速度等值反向等。

二、质点的运动(2)----曲线运动、万有引力

1)平抛运动

1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt

3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2

5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

7.合位移:s=(x2+y2)1/2,

位移方向与水平夹角α:tgα=y/x=gt/2Vo

8.水平方向加速度:ax=0;竖直方向加速度:ay=g

注:

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h(y)决定与水平抛出速度无关;

(3)θ与β的关系为tgβ=2tgα;

(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

2)匀速圆周运动

1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf

3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

注:

(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

3)万有引力

1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)

3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

注:

(1)天体运动所需的向心力由万有引力提供,F向=F万;

(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

三、力(常见的力、力的合成与分解)

1)常见的力

1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)

2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)

5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)

6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)

7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)

注:

(1)劲度系数k由弹簧自身决定;

(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;

(3)fm略大于μFN,一般视为fm≈μFN;

(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;

(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);

(6)安培力与洛仑兹力方向均用左手定则判定。

2)力的合成与分解

1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)

2.互成角度力的合成:

F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

3.合力大小范围:|F1-F2|≤F≤|F1+F2|

4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

注:

(1)力(矢量)的合成与分解遵循平行四边形定则;

(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

四、动力学(运动和力)

1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

3.牛顿第三运动定律:F=-F?{负号表示方向相反,F、F?各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}

5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}

6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕

注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

五、振动和波(机械振动与机械振动的传播)

1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}

2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}

3.受迫振动频率特点:f=f驱动力

4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕

5.机械波、横波、纵波〔见第二册P2〕

6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}

7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)

8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大

9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)

10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}

注:

(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;

(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;

(4)干涉与衍射是波特有的;

(5)振动图象与波动图象;

(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。

六、冲量与动量(物体的受力与动量的变化)

1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}

3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}

4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}

5.动量守恒定律:p前总=p后总或p=p’?也可以是m1v1+m2v2=m1v1?+m2v2?

6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}

7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}

8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}

9.物体m1以v1初速度与静止的物体m2发生弹性正碰:

v1?=(m1-m2)v1/(m1+m2) v2?=2m1v1/(m1+m2)

10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)

11.m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失

E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对相对长木块的位移}

注:

(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;

(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;

(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);

(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;

(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。

七、功和能(功是能量转化的量度)

1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}

2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}

3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}

4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}

5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}

6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}

7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)

8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}

9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}

10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}

12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}

13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}

14.动能定理(对物体做正功,物体的动能增加):

W合=mvt2/2-mvo2/2或W合=ΔEK

{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}

15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP

注:

(1)功率大小表示做功快慢,做功多少表示能量转化多少;

(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);

(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少

(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。

八、分子动理论、能量守恒定律

1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米

2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}

3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。

4.分子间的引力和斥力(1)r<r0,f引<f斥,F分子力表现为斥力

(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)

(3)r>r0,f引>f斥,F分子力表现为引力

(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0

5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),

W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}

6.热力学第二定律

克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);

开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}

7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}

注:

(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;

(2)温度是分子平均动能的标志;

3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;

(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;

(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0

(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;

(7)r0为分子处于平衡状态时,分子间的距离;

(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。

九、气体的性质

1.气体的状态参量:

温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,

热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}

体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL

压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)

2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}

注:

(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

十、电场

1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍

2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}

5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}

11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)

12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)

常见电容器〔见第二册P111〕

14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)

类平 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)

抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m

注:

(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;

(3)常见电场的电场线分布要求熟记〔见图[第二册P98];

(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;

(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;

(6)电容单位换算:1F=106μF=1012PF;

(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J;

(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。

十一、恒定电流

1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}

3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}

4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外

{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R

8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)

电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+

电流关系 I总=I1=I2=I3 I并=I1+I2+I3+

电压关系 U总=U1+U2+U3+ U总=U1=U2=U3

功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+

10.欧姆表测电阻

(1)电路组成 (2)测量原理

两表笔短接后,调节Ro使电表指针满偏,得

Ig=E/(r+Rg+Ro)

接入被测电阻Rx后通过电表的电流为

Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)

由于Ix与Rx对应,因此可指示被测电阻大小

(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。

(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

11.伏安法测电阻

电流表内接法:

电压表示数:U=UR+UA

电流表外接法:

电流表示数:I=IR+IV

Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真

Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)<R真

选用电路条件Rx>>RA [或Rx>(RARV)1/2]

选用电路条件Rx<<RV [或Rx<(RARV)1/2]

12.滑动变阻器在电路中的限流接法与分压接法

限流接法

电压调节范围小,电路简单,功耗小

便于调节电压的选择条件Rp>Rx

电压调节范围大,电路复杂,功耗较大

便于调节电压的选择条件Rp<Rx

注1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω

(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;

(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;

(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;

(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);

(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。

十二、磁场

1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m

2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}

3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}

4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0

(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

注:

(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;

(2)磁感线的特点及其常见磁场的磁感线分布要掌握〔见图及第二册P144〕;(3)其它相关内容:地磁场/磁电式电表原理〔见第二册P150〕/回旋加速器〔见第二册P156〕/磁性材料

十三、电磁感应

1.[感应电动势的大小计算公式]

1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}

2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}

3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}

4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}

2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}

3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}

*4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}

注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。

十四、交变电流(正弦式交变电流)

1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)

2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总

3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2

4.理想变压器原副线圈中的电压与电流及功率关系

U1/U2=n1/n2; I1/I2=n2/n2; P入=P出

5.在远距离输电中,用高压输送电能可以减少电能在输电线上的损失损?=(P/U)2R;(P损?:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;

6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);

S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。

中考物理主要考哪些知识点

高考第三天考试的科目是文综和理综,其中文综包含语文、历史和地理三门学科,而理综则包括物理、化学和生物三门学科。以下是对于这两个考试科目的简要介绍。

语文:主要考察语文基础知识和基本技能,包括阅读理解、写作、修辞技巧等方面。历史:考察学生对于历史发展、人物思想及历史方法的掌握以及历史常识等。地理:考察地理基础知识和基本技能,包括地球与地图、自然环境与人文环境、地理实践等方面。

物理:考察物理学基本概念、基本定律和基本原理的理解和应用,包括力学、热学、光学、电学、原子物理等方面。

化学:考察化学基本概念、基本定律和基本原理的理解和应用,包括化学计量学、化学反应原理、化学键和分子构型等方面。

生物:考察生物学基本概念、基本理论和基本技能的理解和应用,包括生命的特征与多样性、细胞的结构和功能、分子遗传学等方面。

高考第三天考试的文综和理综科目是考生们备战高考的重要内容,需要认真准备和系统复习,提高自己的综合素质和应试能力,为取得好成绩打下坚实基础。

要想在高考文综和理综科目中取得好成绩,考生需要在备考期间注重以下几个方面:

1.掌握基本知识点:高考文综和理综科目的考查重点是学生对于基本知识点的掌握和理解,因此,在备考期间,考生需要认真学习教材中的基础知识点,并做好笔记整理和复习。

2.注重巩固弱项:由于每个人的学科特长和薄弱点不同,在备考期间,考生需要根据自身情况有针对性地进行备考,注重巩固自己的弱项,避免在考试中出现失误和漏洞。

3.多做试题:高考文综和理综科目的试题类型较为多样化,考生需要多做相关的试题,提高自己的解题能力和应试水平,并试图找到各种题型之间的联系和规律,从而有助于提高答题的效率和成绩。

4.注意答题技巧:在考试过程中,考生需要注意答题技巧,熟悉试卷的组成结构和分值情况,根据自己的实际情况进行合理布置时间和策略,避免出现时间不够、题目乱做或偏题等情况。

总之,在备考高考文综和理综科目时,考生需要注重从基础、弱项、试题和答题技巧四个方面进行全面深入的准备,提升自己的学科素养和考试技能,为成功踏入大学铺平道路。

中考物理主要考哪些知识点?相关内容如下:

1. 力学:

运动学: 包括位移、速度、加速度、匀速运动、变速运动等基本概念,以及相关的图表分析和计算。

牛顿运动定律: 包括牛顿第一定律(惯性定律)、牛顿第二定律(运动定律)、牛顿第三定律(作用与反作用定律)。

动量和冲量: 包括动量的概念、动量守恒定律,以及冲量的概念和计算。

2. 光学:

光的传播: 包括光的直线传播、光的折射和反射等基本规律。

光的成像: 包括凸透镜和凹透镜的成像规律,以及镜和像的关系。

光的颜色: 包括光的三原色、光的分光和合成,以及颜色的成因。

3. 电学:

电流和电阻: 包括电流的概念、电阻的概念和计算,以及串联电路和并联电路的基本规律。

电压和电功: 包括电压的概念、电压与电势差的关系,以及电功的计算。

欧姆定律: 包括欧姆定律的表达式和应用。

电磁感应: 包括电磁感应的现象和法拉第电磁感应定律,以及感应电流的方向规律。

4. 热学:

温度和热量: 包括温度的测量,热量的传递和热平衡的概念。

热能转化: 包括内能、机械功和热功的相互转化,以及能量守恒定律。

物体的热性质: 包括热膨胀、比热容等热学性质。

5. 声学:

声音的传播: 包括声音的传播媒质、声速和声波的特性。

声音的性质: 包括声音的频率、振幅和音调,以及声音的共鸣现象。

中考物理试题通常涉及这些知识点,考察学生的基本物理概念、问题分析和解决问题的能力。为了备考中考,学生应该充分掌握这些知识点,理解其基本原理,并能够运用这些知识解决实际问题。此外,通过做大量的物理题目,培养问题分析和解决问题的能力,可以在考试中取得好成绩。

文章标签: # 物理 # 电路 # 电流