您现在的位置是: 首页 > 高考动态 高考动态

高考圆锥曲线解题思路_高考数学圆锥曲线解题技巧

tamoadmin 2024-05-25 人已围观

简介1.高考圆锥曲线2.总结一下数学中解圆锥曲线问题的主要方法?3.如何学好解析几何,特别是圆锥曲线?回答得好给分4.如何利用圆锥曲线的定义解题5.高中数学 《圆锥曲线》解题技巧归纳6.高中数学 圆锥曲线部分有四种解题方法 求这四种方法 具体点 求学霸指点7.数学···圆锥曲线···学习方法8.高中数学圆锥曲线解题技巧解题思路:把直线方程和圆锥曲线方程联立,利用韦达定理和一元二次方程的根的判别式和题目

1.高考圆锥曲线

2.总结一下数学中解圆锥曲线问题的主要方法?

3.如何学好解析几何,特别是圆锥曲线?回答得好给分

4.如何利用圆锥曲线的定义解题

5.高中数学 《圆锥曲线》解题技巧归纳

6.高中数学 圆锥曲线部分有四种解题方法 求这四种方法 具体点 求学霸指点

7.数学···圆锥曲线···学习方法

8.高中数学圆锥曲线解题技巧

高考圆锥曲线解题思路_高考数学圆锥曲线解题技巧

解题思路:把直线方程和圆锥曲线方程联立,利用韦达定理和一元二次方程的根的判别式和题目要求来做,这就是必须的。

解圆锥曲线问题常用以下方法:

1、定义法

(1)椭圆有两种定义。第一定义中,r1+r2=2a。第二定义中,r1=ed1 r2=ed2。

(2)双曲线有两种定义。第一定义中,,当r1>r2时,注意r2的最小值为c-a:第二定义中,r1=ed1,r2=ed2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。

(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法

因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x1,y1),B(x2,y2),弦AB中点为M(x0,y0),将点A、B坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:

(1)与直线相交于A、B,设弦AB中点为M(x0,y0),则有。

(2)与直线l相交于A、B,设弦AB中点为M(x0,y0)则有

(3)y2=2px(p>0)与直线l相交于A、B设弦AB中点为M(x0,y0),则有2y0k=2p,即y0k=p.

高考圆锥曲线

轨迹问题、中点弦问题、垂直类问题等等,不要怕算。知识结构

命题趋势分析

从近三年高考情况看,圆锥曲线的定义、方程和性质仍是高考考查的重点内容,三年平均占分20分,约为全卷分值的13.3%,在题型上一般安排选择、填空、解答各一道,分别考查三种不同的曲线,而直线与圆锥曲线的位置关系又是考查的重要方面。

例1 (2002年江苏卷理科第13题)椭圆 的一个焦点是(0,2),则k________________________________________。

分析 本题主要考查椭圆的标准方程,先将其化为标准形式,然后求解。

解 椭圆方程即 ∴ ,∴由 解得k=1。

点评 由焦点在y轴上,其标准方程应化为 的形式,若此题变化为:已知曲线 的焦距为4,则k_____________________________________。

则应分两种情况讨论:(1)若为椭圆,则k=1;(2)若为双曲线,方程即为

∴ ,由 ,由 ,得 。

例2 (2001年全国卷理科第14题)双曲线 的两个焦点为 ,点P在双曲线上,若 ,则点P到x轴的距离为_________________________________。

分析 本题主要考查双曲线的定义,从“形”的角度看,只需求出 斜边 上的高,可用第一定义求解;从“数”的角度看,只需求出点P的纵坐标 ,先利用第二定义即焦半径公式表示出 , ,由勾股定理求出 ,再代入双曲线方程即可求出 的值;由于点P在以 为直径的圆上,因此,解决本题一个最基本的方法,则是利用交迹法求出点P。

解法一 设 ,且由双曲线的对称性不妨设点P在第一象限,则m―n=2a―6 ①, ②,

②-① 得2mn=64,∵mn=32,作PQ⊥x轴于Q,则在 中, ,即点P到x轴的距离为 ,

解法二 设 ,由第二定义可得 , ,∵ ,

∴ ,

即 ,这里a=3 c=5 ,代入得 。

∴由双曲线方程得 ,∴ 。

解法三 设 ,∵

∴点P在以 为直径的圆上,即

①,又点P在双曲线上,

∴ ②,由①,②消去 ,得 ,∴ 。

点评 (1)由双曲线的对称性,可将点P设定在第一象限内,而不必考虑所有的情况。

(2)解题的目标意识很重要,例如在解法一中只需整体求出mn的值,而不必将m,n解出;在解法三中只需求 即可;

(3)在三种解法中,以解法三最简洁,因此,最基本的方法有时也是最有效的方法。

(4)如果将问题改为:当 为钝角时,点P的横坐标的取值范围是________________________________。

那么,可先求出使 时的点P的横坐标为 ,由图形直观及双曲线的范围可得 ,2000年高考理科第14题考查了椭圆中与此类似的问题。

例3 (2000年全国卷理科第11题)过抛物线 的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则 等于( )

A.2a B. C.4a D.

分析 此题主要考查抛物线的定义与标准方程,可利用焦半径公式来解决。

解 抛物线方程即 ,记 ,则F(0,m),而直线PQ的方程可设为x=k(y-m),代入抛物线方程 得

设 ,则

而 ,

于是, ,

故, 。

当k=0时,易证结论也成立,因而选C。

点评 (1)由于所给抛物线的焦点在y轴上,故其焦点是 ,焦半径公式是 ,而不能写成 。(2)解题中,令 以及将直线PQ的方程设为x=k(y-m),都是为了简化运算。(3)作为一道选择题,如此解法显然是不经济的,可以利用上节例5中的结论3直接得出结果,因此,记住一些重要结论,对提高解题效率无疑是有益的。(4)特例法也是解选择题的常用的解题方法,本题只需考虑PQ//x轴,即为通径的情况,可立即得出结果。

例4 (2001年全国卷理科第19题)设抛物线 的焦点F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC//x轴,证明直线AC经过坐标原点O。

分析 本小题主要考查抛物线的概念和性质,直线的方程和性质,运算能力和逻辑推理能力,证明三点共线,只须证明OC、OA两直线的斜率相等,也可利用抛物线的性质证明AC与x轴的交点N恰为EF的中点,从而N与O重合,证得结论。

解法一 易知焦点 ,设直线AB的方程是 ,代入抛物线方程得

设 ,则

,即 。

因BC//x轴,且C在准线1上,故点 ,且 ,从而 ,从而

, ,

于是, ,从而A、O、C三点共线,即直线AC经过原点O。

解法二 如图,设准线1交x轴于点E,AD⊥1于D,连AC交EF于点N,由AD//EF//BC,

得 ,即 ,①

,即 ,②

又由抛物线的性质可知,|AD|=|AF|,|BC|=|BF|,代入①②可得|EN|=|NF|,即N为EF的中点,于是N与点O重合,即直线AC经过原点O。

点评 (1)本例解法一利用曲线的方程研究曲线的性质,充分体现了用坐标法研究几何问题的基本思想,而解法二则充分利用了抛物线的几何性质及相似三角形中的有关知识。(2)在解法一中,直线AB方程的设法值得推崇,从思路分析看,若证 ,即证 ,将 代入后即证 ,即证 ,为此应通过直线AB的方程及抛物线方程 联立消去x得到关于y的一元二次方程,解法一中的这一设法,既回避了直线方程的变形过程使运算简单,同时也回避了当AB⊥x轴的情况的讨论,若将AB方程设为 ,则必须对k不存在的情况作出说明。(3)试验修订本(必修)《数学》第二册(上) 习题8.6第6题是:过抛物线焦点的一条直线与它交于两点P、Q,经过点P和抛物线顶点的直线交准线于点M,求证直线MQ平行于抛物线的对称轴,可见,这道高考题实际上是课本习题的一个逆命题,同学们在平时的学习中,对课本典型例题,习题要加强研究。

例5 (2002年江苏卷第20题)设A、B是双曲线 上的两点,点N(1,2)是线段AB的中点。

(1)求直线AB的方程;

(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?

分析 本题主要考查直线、圆及双曲线的方程和性质,运算能力和综合运用所学知识解决问题的能力。求直线AB的方程,可以设出其点斜式,与双曲线方程联立消元,利用韦达定理及中点公式求出其斜率,由于涉及“中点弦”问题,亦可利用“设而不求”法解决。对于第(2)小题,根据图形特征,若四点共圆,则CD必为其直径,至少可有以下三种解题思路:(1)判断CD中点到四点是否等距;(2)判断是否有AC⊥AD;(3)判断A、B两点是否以CD为直径的圆上。

解 (1)解法一:设AB:y=k(x-1)+2代入 ,整理得

。①

设 ,则

,且

因N(1,2)是AB的中点,故 ,于是 ,解得k=1,从而所求直线AB的方程为y=x+1。

解法二:设 ,代入双曲线方程得

因N(1,2)为AB的中点,故 , ,将它们代入上式可得 ,从而 ,于是直线AB的方程为y=x+1。

(2)将k=1代入方程①得, ,解得 , 。

由y=x+1得, , ,即A(-1,0),B(3,4),而直线CD的方程是y―1=―(x―2),即y=3-x,代入双曲线方程并整理得 ②

设 ,则 , 。

解法一:设CD中点为 ,则 ,于是 ,即M(-3,6)。

故 。

即A.B.C.D四点与点M的距离相等,从而A、B、C、D四点共圆。

解法二:由 , 得, ,

,故

,即AC⊥AD。

由对称性可知,BC⊥BD,于是A、B、C、D四点共圆。

解法三:以CD为直径的圆的方程是

,即

将 , , , ,代入得

,即 。

因 ,

故A、B在以CD为直径的圆上,即A、B、C、D四点共圆。

点评 (1)处理直线与圆锥曲线相交问题时,要重视韦达定理的应用。(2)“设而不求”是解决“中点弦”问题常用的方法,通过“设而不求”可以建立弦所在直线的斜率与弦的中点坐标之间的关系,本题已知中点坐标,即可确定出直线的斜率。(3)判断四点共圆的方法很多,注意从多种不同的角度进行思考,锻炼思维的灵活性。

典型热点考题

1.探究

例6 设 分别是椭圆 的左、右焦点,试问:在椭圆上是否存在一点P,使得 ?为什么?

分析 根据点P满足的条件,探究是否能够将点P的坐标求出,若能,则存在;若不能,则不存在,求P点坐标,有以下两条思路:

思路一 设 ,用焦半径公式将 , 用 表示,由 ,探求 是否存在。

思路二 由 知,点P在以 为直径的圆上,只须考察该圆与椭圆是否存在公共点。

思考:画一个较为准确的图形,不难发现,圆 与椭圆 没有公共点,所以这样的点P是不存在的,关键是这个椭圆太“圆”了,由此引发我们思考:为使点P存在,椭圆应尽量“扁”一些,也即其离心率应该较大,于是我们可以去思考一个一般性的问题:

一般化:若椭圆 上存在一点P,使得 ,求离心率e的取值范围。

利用例6提供的两个思路均可得到 ,从而验证了我们的猜想。

再思考:考察点P从长轴端点 始沿椭圆运动至 的过程, 由0°逐渐增大后又逐渐减小为0°,猜想在某一位置必然取得最大值,试问:这个最大值是多少?又在何处取得?从椭圆的对称性来看,我们可以猜想:当点P在短轴端点B处时, 取得最大值,是不是这样呢?

利用焦半径公式及余弦定理不难验证这一猜想是正确的。

若设 ,我们有 。

回头看,在例6中, , ,代入可得 ,故0°≤θ≤60°,可见使θ=90°的点P是不存在的。

又一个问题:若椭圆 上存在一点P,使 ( 、 为长轴端点),求离心率e的取值范围。

分析 不再是椭圆的焦半径,按照例6中的思路一已经不能解决问题,但是我们知道,使 的点P是轨迹是关于 对称的两段圆弧,可先求出圆弧所在圆的方程,然后按照思路二进行研究,下面我们给出这一问题的解答。

解 由对称性,不妨设 ,则 , ,由到角公式得

,即 ,

整理得, 。 ①

又 ,故 。 ②

②代入①得, 。

因点P在椭圆上,故 ,即 ,从而 ,即 ,也就是 ,从而 ,解得 ,又0<e<1,故 。

点评 (1)在解析几何中,直角一般由垂直条件来转化,而一般角则常用到角公式来转化,若想用余弦定理将无法运算进行到底。(2)注意利用椭圆的范围性,由 来建立a、b、c三者之间的不等式关系,从而求出e的范围。

2.应用。

例7 某隧道横断面由抛物线的一段和矩形的三边组成,尺寸如图,某卡车载一集装箱,箱宽3m,车与箱共高4m,试问:该车能否通过此隧道?为什么?

分析 此题为抛物线在实际问题中的应用,可利用抛物线的方程和性质进行研究。

解 以抛物线弧的顶点为原点,建立图示直角坐标系,设抛物线的方程为 ,从图示可以看出,点(3,-3)在抛物线上,故 ,得2p=3,即抛物线的方程是 。

由抛物线的对称性可知,为使此车尽量通过此隧道,车应沿隧道中线行驶,令 代入 得 ,所以集装箱两侧隧道的高度是 。

因为车与箱共高仅4米,即h>4,所以此车能通过此隧道。

点评 (1)实际问题应转化为数学问题来处理,此处通过建立坐标系转化为解析几何中的问题。(2)建系应恰当,尽量使方程为标准方程,分析问题时注意考虑图形的对称性。

总结一下数学中解圆锥曲线问题的主要方法?

圆锥曲线定义的应用

规律与方法:

1、圆锥曲线的定义是相应标准方程和几何性质的“源”,对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略.

2、研究有关点间的距离的最值问题时,常用定义把曲线上的点到焦点的距离转化为到另一焦点的距离或利用定义把曲线上的点到焦点的距离转化为其到相应准线的距离,再利用数形结合的思想去解决有关的最值问题.

例1 若点M(2,1),点C是椭圆x216+y2

7

=1的右焦点,点A是椭圆的动点,则|AM|+|AC|的最

小值是________

跟踪训练1 已知椭圆x29+y2

5=1,F1、F2分别是椭圆的左、右焦点,点A(1,1)为椭圆内一点,

点P为椭圆上一点,求|PA|+|PF1|的最大值.

2

题型二 有关圆锥曲线性质的问题

规律与方法

有关圆锥曲线的焦点、离心率、渐近线等问题是考试中常见的问题,只要掌握基本公式和概念,并且充分理解题意,大都可以顺利求解.

例2 已知椭圆x23m2+y25n2=1和双曲线x22m2-y2

3n2=1有公共的焦点,那么双曲线的渐近线

方程是

跟踪训练2 已知双曲线x2a2-y2b2=1的离心率为2,焦点与椭圆x225+y2

9=1的焦点相同,那

么双曲线的焦点坐标为________;渐近线方程为________.

题型三 直线与圆锥曲线位置关系问题

规律与方法:

1.直线和圆锥曲线的位置关系可分为三类:无公共点、仅有一个公共点及有两个相异的公共点.其中,直线与圆锥曲线仅有一个公共点,对于椭圆,表示直线与其相切;对于双曲线,表示与其相切或直线与双曲线的渐近线平行;对于抛物线,表示与其相切或直线与其对称轴平行.

2.有关直线与圆锥曲线的位置关系的题目可能会涉及直线与圆锥曲线的关系中的弦长、焦点弦及弦中点问题、取值范围、最值等问题.

3.这类问题综合性强,分析这类问题,往往利用数形结合的思想和“设而不求”的方法、对称的方法及根与系数的关系等.

例3 已知椭圆C:x2a2+y2b2=1 (a>b>0)的离心率为6

3,短轴一个端点到右焦点的距离为3.

(1)求椭圆C的方程;

(2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为3

2

,求△AOB面积的最大值.

3

跟踪训练3 已知向量a=(x,3y),b=(1,0)且(a+3b)⊥(a-3b). (1)求点Q(x,y)的轨迹C的方程;

(2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,-1),当|AM|=|AN|时,求实数m的取值范围

题型四 与圆锥曲线有关的轨迹问题

规律与方法:

轨迹是动点按一定规律运动而形成的,轨迹的条件可以用动点坐标表示出来.求轨迹方程的基本方法是

(1)直接法求轨迹方程:建立适当的直角坐标系,根据条件列出方程; (2)待定系数法求轨迹方程:根据曲线的标准方程; (3)定义法求轨迹方程:动点的轨迹满足圆锥曲线的定义;

(4)代入法求轨迹方程:动点M(x,y)取决于已知曲线C上的点(x0,y0)的坐标变化,根据两者关系,得到x,y,x0,y0的关系式,用x,y表示x0,y0,代入曲线C的方程. 例4 如图,已知线段AB=4,动圆O1与线段AB切于点C,且AC-BC=22,过点A、B分别作圆O1切线,两切线交于点P,且P、O1均在AB的同侧,求动点P的轨迹方程.

如何学好解析几何,特别是圆锥曲线?回答得好给分

数形结合法

解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来考虑问题,在解题时要充分利用代数运算的严密性与几何论证的直观性,尤其是将某些代数式子利用其结构特征,想象为某些图形的几何意义而构图,用图形的性质来说明代数性质。

参数法

(1)点参数利用点在某曲线上设点(常设“主动点”),以此点为参数,依次求出其他相关量,再列式求解。如x轴上一动点P,常设P(t,0);直线x-2y+1=0上一动点P。除设P(x1,y1)外,也可直接设P(2y,-1,y1)

(2)斜率为参数

当直线过某一定点P(x0,y0)时,常设此直线为y-y0=k(x-x0),即以k为参数,再按命题要求依次列式求解等。

(3)角参数

当研究有关转动的问题时,常设某一个角为参数,尤其是圆与椭圆上的动点问题。

代入法

这里所讲的“代入法”,主要是指条件的不同顺序的代入方法,如对于命题:“已知条件P1,P2求(或求证)目标Q”,方法1是将条件P1代入条件P2,方法2可将条件P2代入条件P1,方法3可将目标Q以待定的形式进行假设,代入P1,P2,这就是待定法。不同的代入方法常会影响解题的难易程度,因此要学会分析,选择简易的代入法。

如何利用圆锥曲线的定义解题

以下是我个人总结的一点经验,你可以借鉴一下!

一、圆锥曲线题型的主要特点:一般来说解题思路比较简单,但运算量较为繁琐。因此要想攻破这类题型必须加强以下几个方面的能力:一是掌握解题基本的方法和常用公式;二是提高元算能力和总结一些简便运算的技巧;三是理解和运用主要的几大数学思想(即数形结合思想、函数思想、分类讨论思想、转化思想和整体替换思想);四是掌握一些常用的设点技巧(这是减少元算量的关键)。

二、高考试题中该类题型的分布位置:一般放在第四道大题的位置。它一般分为三个小题:第一小题一般是求点的轨迹(4分);第二和第三小题是其它类型的题(如求定点、定直线、定距离、最值等问题),分别占5分。(设直线的方程是要注意斜率是否存在)

三、圆锥曲线的重点理论知识:(1)求动点轨迹的的基本方法:1、定义法(也称为直接法或几何法):根据圆锥曲线的定义求即可(注意:此法应优先考虑)2、间接法:先设出动点的坐标,在根据已知条件寻找几个等量关系,再化简即可;3、交轨法:转化为其它曲线的交点轨迹;4、参数法:先用参数表示动点坐标的表达式,再消去参数即可。(2)椭圆的第二定义:若一动点到定点的距离与到定直线的距离的比小于1,则该动点的轨迹为椭圆。(该比值其实就是离心率,该定点为焦点,该直线为准线)(双曲线的第二定义与此类似,只需把比值改为大于1即可)(3)椭圆的焦半径公式:AF1=a-ex,AF2=a+ex;椭圆的焦三角形的面积公式:SpF1F2=b^2*tan@/2;双曲线的焦半径公式:AF1=ex-a,AF2=ex+a;双曲线的焦三角形的面积公式:SPF1F2=b^2/tan@/2。(其中A为椭圆或双曲线上的点,x为A点的横坐标,e为离心率,@为F1pF2的角度)(4)若过抛物线y^2=2px的焦点的直线与抛物线交于A和B两点,设A(x1,y1).B(x2,y2),则有x1*x2=p^2/4,y1*y2=-p^2。(以上的结论最好自行推导一下)(5)当椭圆的焦三角形pF1F2的顶点p与短轴的端点重合时,角F1pF2的角度最大。(6)解圆锥曲线问题时常用的几个重要公式(务必要理解并牢记它,这是不会做这类题也可以拿到分的关键):1、韦达定理:x1+x2=-b/a,x1*x2=c/a

2、弦长公式:d=(1+k^2)*((x1+x2)^2-4x1x2)的值的算术平方根

3、中点弦公式(其作用主要是建立中点的坐标与直线斜率的关系):1、直线与椭圆(x^2/a^2+y^2/b^2=1)相交则k=(y1-y2)/(x1-x2)=-b^2*x0/(a^2*y0)

2、直线与双曲线(x^2/a^2-y^2/b^2=1)相交则k=b^2*x0/(a^2*y0) 3、直线与抛物线(y^2=2px)相交则k=p/y0

(其中A(x1,y1)和B(x2,y2)为两曲线的交点,而(x0,y0)为A和B的中点,k为直线的斜率) 圆锥曲线的题型大致可以分为以下几类:1、定点问题

2、定直线问题 3、最大最小值问题 4、定长或定距离问题 5、参数范围问题 6、与向量相结合的题型

(至于这几种题型的具体解题方法先让你自己通过练习大量的题来进行归纳总结,暂时不直接给出给你,因为只有通过你自己的思考再总结出来的东西理解才更加深刻,运用才更自如)(当然圆锥曲线的其它题型与方法还有很多,要靠你自己去挖掘,这里不便给出,也不可能给出,因为数学的题型是千变万化的,但也是非常有规律可寻的)

下面留几道题给你做练习

高中数学 《圆锥曲线》解题技巧归纳

圆锥曲线学会注意这几点吧

①定义和相应参数必须掌握。一些问题死算很花时间,而用定义几乎是秒杀。经常在最值类题目出现

②注意一些几何关系。在圆锥曲线题目中,经常用到三角形各心的性质,相似三角形以及全等等平面几何知识。这个经常在轨迹类题目出现。

③特别注意直线和圆锥曲线的位置关系这块知识,近几年各地高考考察率几乎是100%。尤其注意相交时的设而不求。这块知识往往是难点,难不是想不到,而是算不出。所以平时必须加强计算能力。常见问题:定值定点,参数范围,中点弦等、

④在基础的掌握后,必须自学一些课堂上讲不到的一些知识,对付一些题目可以起到事半功倍的效果。我这几个:极坐标,参数方程,圆锥曲线硬解定理,隐函数求导,圆锥曲线的极点和极线。极坐标对于过焦点的直线的相关问题可谓是秒杀,参数方程可秒某些范围问题。硬解定理在80%的圆锥曲线题目中可用,但是式子复杂,我当时自己推了几遍,然后每次都用用熟的,这个熟悉了之后,常见的一些题目都能在10分钟内解决了。隐函数求导和圆锥曲线的极点极线二选一,作用一样,都是用来解决中点弦问题,比点差法快。

注:极坐标和硬解定理以及参数方程可在答题卡上作答。其他的谨慎,大题老实点差法,小题偷偷用。

,祝学习愉快

高中数学 圆锥曲线部分有四种解题方法 求这四种方法 具体点 求学霸指点

圆锥曲线一上来就考虑联立方程组,算出判别式,写出X1+X2,X1*X2,这样就算你这道题不会做,做到这儿一般能拿到6—8分,步骤分还要根据题的难易程度。你做题可以试试,保证屡试不爽。

数学···圆锥曲线···学习方法

高中数学合集百度网盘下载

链接:提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

高中数学圆锥曲线解题技巧

我研究圆锥曲线30多年,结合高考问题,答复如下:

1、定义是灵魂,两个定义,熟记。简答题要求求方程的,就考虑定义,同时考虑圆的情况。不会超出这四种。特别注意双曲线时,是全部还是一支。

2、离心率问题。近年考率大增,方法一般有三角形相似,得出一点坐标,带入曲线方程解得离心率。如2010年全国一卷10题。椭圆短轴顶点B,一个焦点为F,连接BF与椭圆交与D,且向量BF=2向量FD,求离心率。解法为设椭圆焦点在x轴上。过D做DE垂直y轴,垂足为E。先设BF=2m,FD=m。根据三角形相似,OF比DE=2比3,又OF=c,所以DE=1.5C.同理OE=0.5b,即E坐标(1.5c,-0.5b),带入椭圆方程x?/a?+y?/b?=1,解得e=√3/3。这题也可用定义解,方法比这繁杂。又如2009年2卷10题。过双曲线右焦点F且倾斜角60°的直线交双曲线右支与A,B两点,向量AF=4向量FB,求离心率。解:先设AF=4m,BF=m.过A,B做AA1,BB1分别垂直准线,垂足为A1,B1。根据定义得AA1=4m/e,BB1=m/e.过B做AA1的垂线,垂足D,三角形ABD中角ABD=30°,AA1=BB1=4m/e-m/e=3m/e=AD=sin30°×AB=0.5×5m,解得e=6/5。

3、弦长公式,书上有记住,为了避免斜率不存在的讨论,可设直线方程为x=my+。。。的形式。此时弦长公式中k?变为1/m?。

4、点差公式。一般说明中点坐标的,用它。

5、我打字慢呀,等我给个吧。6

 解答数学圆锥曲线试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整。下面我给你分享高中数学圆锥曲线解题技巧,欢迎阅读。

高中数学圆锥曲线解题技巧

 1.充分利用几何图形的策略

 解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,往往能减少计算量。

 例:设直线3x+4y+m=0与圆x+y+x-2y=0相交于P、Q两点,O为坐标原点,若OP?OQ,求m的值。

 2.充分利用韦达定理的策略

 我们经常设出弦的端点坐标但不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。

 例:已知中心在原点O,焦点在y轴上的椭圆与直线y=x+1相交于P、Q两点,且OP?OQ,|PQ|=,求此椭圆方程。

 3.充分利用曲线方程的策略

 例:求经过两已知圆C:x+y-4x+2y=0和C:x+y-2y-4=0的交点,且圆心在直线l:2x+4y-1=0上的圆的方程。

 4.充分利用椭圆的参数方程的策略

 椭圆的参数方程涉及正、余弦,利用正、余弦的有界性,可以解决相关的求最值的问题。这也就是我们常说的三角代换法。

 例:P为椭圆+=1上一动点,A为长轴的右端点,B为短轴的上端点,求四边形OAPB面积的最大值及此时点P的坐标。

 5.线段长的几种简便计算策略

 (1)充分利用现成结果,减少运算过程。

 求直线与圆锥曲线相交的弦AB长:把直线方程y=kx+b代入圆锥曲线方程中,得到型如ax+bx+c=0的方程,方程的两根设为x,x,判别式为△,则|AB|=?|x-x|=?,若直接用结论,能减少配方、开方等运算过程。

 例:求直线x-y+1=0被椭圆x+4y=16所截得的线段AB的长。

 (2)结合图形的特殊位置关系,减少运算。

 在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。

 例:F、F是椭圆+=1的两个焦点,AB是经过F的弦,若|AB|=8,求|FA|+|FB|的值。

 (3)利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离。

 例:点A(3,2)为定点,点F是抛物线y=4x的焦点,点P在抛物线y=4x上移动,若|PA|+|PF|取得最小值,求点P的坐标。

高中数学圆锥曲线题型

 1.中点弦问题

 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(x,y),(x,y),代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。

 例:给定双曲线x-=1,过A(2,1)的直线与双曲线交于两点P和P,求线段PP的中点P的轨迹方程。

 2.焦点三角形问题

 椭圆或双曲线上一点P,与两个焦点F、F构成的三角形问题,常用正、余弦定理。

 例:设P(x,y)为椭圆+=1上任一点,F(-c,0),F(c,0)为焦点,?PFF=?,?PFF=?。

 (1)求证:离心率e=;

 (2)求|PF|+|PF|的最值。

 3.直线与圆锥曲线位置关系问题

 直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法。

 例:抛物线方程y=p(x+1)(p>0),直线x+y=t与x轴的交点在抛物线准线的右边。

 (1)求证:直线与抛物线总有两个不同交点。

 (2)设直线与抛物线的交点为A、B,且OA?OB,求p关于t的函数f(t)的表达式。

 4.圆锥曲线的有关最值问题

 圆锥曲线中的有关最值问题,常用代数法和几何法解决。若命题的条件和结论具有明显的几何意义,一般可用图像性质来解决。若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。下题中的(1),可先设法得到关于a的不等式,通过解不等式求出a的范围,即:?求范围,找不等式?。或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围。对于(2),首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值,即?最值问题,函数思想?。

 例:已知抛物线y=2px(p>0),过M(a,0)且斜率为1的直线L与抛物线交于不同的两点A、B,|AB|?2p,(1)求a的取值范围;(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值。

 5.求曲线的方程问题

 (1)曲线的形状已知,这类问题一般可用待定系数法解决。

 例:已知直线L过原点,抛物线C的顶点在原点,焦点在x轴正半轴上。若点A(-1,0)和点B(0,8)关于L的对称点都在C上,求直线L和抛物线C的方程。

 (2)曲线的形状未知,求轨迹方程。

 例:已知直角坐标平面上点Q(2,0)和圆C:x+y=1,动点M到圆C的切线长与|MQ|的比等于常数?(?>0),求动点M的轨迹方程,并说明它是什么曲线。

 6.存在两点关于直线对称问题

 在曲线上两点关于某直线对称问题,可按如下方法解题:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。当然也可利用韦达定理并结合判别式来解决。

 例:已知椭圆C的方程+=1,试确定m的取值范围,使得对于直线y=4x+m,椭圆C上有不同两点关于直线对称。

 7.两线段垂直问题

 圆锥曲线两焦半径互相垂直问题,常用k?k==-1来处理或用向量的坐标运算来处理。

文章标签: # 直线 # 方程 # 问题